A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or RACECAR, or AMANAPLANACATACANALPANAMA. Note that a palindrome may have an odd number of characters.

(a) Let $MaxPalSub(i,j)$ be the length of the longest subsequence of $X[i .. j]$ that is also a palindrome. (For simplicity, we treat $X[i .. j]$ as empty if $i > j$.) Fill in the blanks to complete the following recursive definition of $MaxPalSub(i,j)$.

Solution:

$$
MaxPalSub(i,j) = \begin{cases}
0 & \text{if } i > j \\
1 & \text{if } i = j \\
2 + MaxPalSub(i+1,j-1) & \text{if } i < j \text{ and } X[i] = X[j] \\
\max \left\{ MaxPalSub(i,j-1), MaxPalSub(i+1,j) \right\} & \text{otherwise}
\end{cases}
$$

Rubric: 4 points total: 1 point per blank.

(b) Use dynamic programming to write a method in Java that takes as its one parameter an array x of characters and returns the length of the longest palindrome subsequence in x. Your method should be based on the above recurrence and run in $O(n^2)$ time given an array of length n.

Solution:

```java
public static void longestPalindromeLength(char[] x) {
    int n = x.length;

    // Second base case prevents i = n + 1 or j = 0.
    int[][] maxPalSub = new int[n][n];
    for (int i = n - 1; i >= 0; i--) {
        for (int j = 0; j < n; j++) {
            if (i > j) {
                maxPalSub[i][j] = 0;
            } else if (i == j) {
                maxPalSub[i][j] = 1;
            } else if (x[i] == x[j]) {
                maxPalSub[i][j] = 2 + maxPalSub[i+1][j-1];
            } else {
                maxPalSub[i][j] = Math.max(maxPalSub[i][j-1], maxPalSub[i+1][j]);
            }
        }
    }

    return maxPalSub[0][n-1];
}
```
Rubric: 6 points total: −2 points for not returning correct entry; −3 points for not filling table in correct order.
Suppose you are given a directed graph \(G = (V, E) \) where each edge has an integer weight between 0 and some small value \(M > 0 \) along with a designated vertex \(s \in V \). You may assume every vertex is reachable from \(s \).

(a) What is the maximum possible distance a vertex can have from \(s \)?

Solution: Weights are non-zero, so shortest paths need not repeat any vertices. The longest simple path has \(|V| - 1\) edges, so the maximum distance is \(M(|V| - 1) \).

Rubric: 2 points total. Any value larger but asymptotically equal to \(M(|V| - 1) \) is worth full credit.

(b) Describe how to implement Dijkstra’s algorithm so that it runs in \(O(M|V| + |E|) \) time.

Solution: Instead of a priority queue, we’ll maintain an array of doubly linked lists where the list in position \(i \) contains links to all vertices \(v \) such that \(v.dist = i \). We’ll also have each vertex maintain a link to its linked list node so the vertex can be removed and then inserted into a different list in \(O(1) \) time. All \(dist \) values are either \(\infty \) or integers between 0 and \(M(|V| - 1) \), so the array should have length \(M(|V| - 1) + 1 \).

Initially, only vertex \(s \) belongs to a list, and that list is the one at position 0. Whenever some value \(v.dist \) is updated, we remove \(v \) from the list containing it (if \(v.dist \neq \infty \)) and add \(v \) to the list at position \(v.dist \).

For the outer loop, we maintain a single \(\text{finger} \) integer equal to the largest distance of any known vertex. To pick the next vertex to process, we increment the \(\text{finger} \) until it equals the position of a non-empty list, remove a vertex \(v \) from the list, and process \(v \). Distances for the vertices we process only increase over the course of the algorithm, so we’ll never “skip” a vertex choosing them in this way.

Creating the array and incrementing the \(\text{finger} \) at empty positions takes \(O(M|V|) \) time total. Processing vertices takes \(O(|E|) \) time total as each distance check and update takes only \(O(1) \) time. The total time used is \(O(M|V| + |E|) \).

Rubric: 8 points total.