Red-black tree remove

Down to remove node with one child.

If v is red, \(\rightarrow \) No children.
Just remove it.
O.W.

If \(v \) has a red child,

promoted \(c \) as a new black node.

O.W. what to do is \(v \) has one black child (may be null)
If v is the root, just remove v and make its child the root.

If v has red sibling

rotate so w has child p. Color w black & p red.
Now to case: v has a black sibling

- If w has a red child, c
 - If c is closer to v...
 - Double rotate so c is parent of p & w.
 - Give c p's color.
p is black

Remove v

FS o is the farthest child
Single rotate so w is on top with children cop.

Color w as p is colored,
color p black
remove v
If \(w \) has no red child

If \(p \) is black, add new black node \(v' \) above \(p \) with \(p \) its only child, remove \(y \) color \(w \) red

Recursively remove \(v' \)
If v was red, just make p black, w red, remove v.
2-3-4 tree remove

If leaf has 2 or 3 elements, just remove it.

O.w., how to remove an empty one-child node somewhere in tree.
If root, just remove.

0.w.

Find adjacent child.

If 2 or 3 elements, promote closest element to parent node.
demote element that was separating empty node from sibling

If sibling has one element,
steal from parent & fuse with sibling

skip list
Want to sort elements

\[
\text{Merge Sort } (A[0,...,n-1])
\]

if \(m \geq 2 \) then

\[
m \leftarrow \lfloor n/2 \rfloor
\]

\[
\text{Merge Sort } (A[0,...,m])
\]

\[
\text{Merge Sort } (A[m+1,...,n-1])
\]

\[
\text{Merge } (A[0..n-1], m) \leftarrow O(n)
\]

\(T(n) \): worst-case time for Merge Sort on \(n \) elements

\[
T(0) = O(1)
\]

\[
T(1) = O(1)
\]

\(\text{w.t.} \)

\[
T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)
\]

\[
= 2T(\lfloor n/2 \rfloor) + O(n)
\]
\[T(n) = O(n \log n) \]
(can prove with induction)
(how to solve \(T(n) \) won't be on mid term)

\[\text{Strange Recurrence:} \]
\[S_r(i,j) = \begin{cases}
 9 & \text{if } i = 0 \\
 2 & \text{if } i > 0 \\
 S_R(i-1,j) + S_R(i,j-1) & \text{else}
\end{cases} \]

\[T(m,n) = \text{time to solve } S_R(m,n) \text{ recursively} \]
\[T(m,n) = T(m-1,n) + T(m-1,n-1) + O(1) \text{ for } m,n \]
Proof by induction:

Assume for all \(0 \leq k < n\),
\[\sum_{i=0}^{k} 3^i = 3^{k+1} - 1 \]
and
\[\sum_{i=0}^{k} 3^i = 3^{k+1} - 1 \]

If \(n = 0\),
\[\sum_{i=0}^{n} 3^i = 3^0 = 1 = \frac{3^1 - 1}{2} \]

If \(n \geq 1\),
\[\sum_{i=0}^{n} 3^i = \sum_{i=0}^{n-1} 3^i + 3^n \]
\[= 3 + \sum_{i=0}^{n-1} 3^i \]
\[= 3 + \frac{3^n - 1}{2} \]
\[= \frac{2 \cdot 3^n + 3^n - 1}{2} \]
For all cases, sum is \(\frac{3^{n+1} - 1}{2} \).
How many nodes in \mathcal{F}_n?

Claim: \mathcal{F}_n has $F_{n+2} - 1$ nodes.

Proof: Assume \mathcal{F}_k has $F_{k+2} - 1$ nodes for any $1 \leq k < n$.

If $n = 1$, \mathcal{F}_0 nodes is

\[1 = F_3 - 1 = F_{n+2} - 1 \]

If $n \geq 2$

From (6), F_n has F_n leaves.

\Rightarrow \mathcal{F}_n has ($\#$ leaves in \mathcal{F}_{n-1}) + F_n nodes
\[F_{n+1} = F_n + F_{n+2} - 1 \]