CS 3345 HON

Kyle Fox (he/him)
Data structures: methods of organizing large amounts of data

```java
int n = 10000;
int[] bunchOfInts;
bunchOfInts = new int[n];
```

Array of n = 10,000 ints can read/write bunchOfInts[i] in constant time
insert in $\Theta(n)$ time
delete in $\Theta(n)$ time
+ algorithms!
https://personal.utdallas.edu/~kyle.fox/courses/cs3345.hon.22f/

↑

Reading, schedule, etc.

Learning, grades, turn-in
Grades:
assignments: 40% (written homework + programming)
drop lowest can use outside resources with citation - no penalty
mid-term: 25%
final: 35%
↑
cumulative
Math Review

Exponents:

\[x \cdot x = x^{a+b} \]
\[x / x = x^{a-b} \]
\[(x^a)^b = x^{ab} \]
\[\log_a y = x \iff a^x = y. \]

\[
\begin{align*}
\log_2 n & = \log_{10} n \\
\ln n & = \log_e n \\
\text{(e = 2.718)} \\
\log n & = \log_2 n \text{ (text)} \\
\log_{10} n \text{ (me)}
\end{align*}
\]
\[a, b, x, y > 0 \]
\[a, b \neq 1 \]

\[\log_b x = \frac{\log_a x}{\log_a b} \]

\[\log_a xy = \log_a x + \log_a y \]

\[\log_a \frac{x}{y} = \log_a x - \log_a y \]

\[\log_a x^c = c \log_a x \]
Prop: \(a, x, y > 0 \) \(a \neq 1 \) \(a^\log_a y = \log_a (x^{\log_a y}) \) \(= a^{\log_a (y^{\log_a x})} \) \(= a \).
\[
\sum_{i=0}^{n} a + id = a + \sum_{i=0}^{n} d + \sum_{i=0}^{n} 2d + \cdots + a + nd = \frac{(a + dn)(n+1)}{2}
\]
\[
\begin{align*}
\Rightarrow \quad & \quad \exists \quad \omega = 0 \\
\therefore \quad \omega = 0 & \quad \Rightarrow \quad \frac{n(n+1)}{2} = \Theta \left(n^2 \right) \\
\text{also} & \\
\exists \quad \omega^* & \quad \Rightarrow \quad \omega^* = \Theta \left(n^{c+1} \right) \\
\text{if} & \quad n > -1 \\
\text{nth Harmonic number:} & \\
H_n & \quad \Rightarrow \quad \sum_{i=1}^{n} \frac{1}{\omega} = \Theta (\log n)
\end{align*}
\]
If \(c < -1 \)

\[
\sum_{i=3}^{n} i \cdot c = \Theta(i)
\]

\[\omega = 0\]

geometric series

\[
\sum_{i=3}^{n} a r \cdot i = a + ar + ar^2 + \cdots
\]

\[\omega = 0\]

\[
= a \left(1 - r^{n+1}\right)
\]

\[\frac{a}{1-r}\]
If \(r > 0 \), \(r \neq 1 \), then \(r \) is a constant, and the sum is proportional to the largest term.

\[
\sum_{i=0}^{n} ar^i = \Theta(a) \quad \text{if} \quad 0 < r < 1
\]

\[
\sum_{i=0}^{n} ar^i = \Theta(ar^n) \quad \text{if} \quad r > 1
\]
Proofs:
Let n be a positive integer.
A divisor of n is an integer d s.t.
n/d is an integer.

n is prime if it has exactly 2 divisors.
Thm: Every integer \(n > 1 \) has a prime divisor.
Direct proof:
Let \(n > 1 \) be an integer.
\(n \) has a prime divisor \(\Box \)

Proof by contradiction:
Assume there is an integer \(n > 1 \) with no prime divisor.
That's absurd!
Our assumption was wrong!
Proof: Assume there is an int \(n > 1 \) with no prime divisor.
\(n \) is its own divisor so \(n \) is not prime.
So there is an int \(1 < d < n \) that divides \(n \).
\(d \) is not prime, so
Some \(1 \leq d' \leq d \) divides \(d \).

\[\frac{n}{d'} = \left(\frac{n}{d} \right) \cdot \left(\frac{d}{d'} \right) \]

is an integer so \(d' \) divides \(n \).

There is a \(1 \leq d'' \leq d' \) that divides \(d' \)...

\(\text{Ma}_{-1} \)
Proof by smallest counterexample.

Let \(n \geq 1 \) be the least integer with no prime divisor.

\(n \) is not prime.

Exist \(1 < d < n \) that divides \(n \).
By assumption, \(d \) has a prime divisor. So some prime \(p \) divides \(d \), \(p \) divides \(n \). But \(n \) had no prime divisor?
Direct proof:

Let n be any int ≥ 1. Assume for every int k s.t. $1 \leq k < n$, int k has a prime divisor.

If n is prime, it is its own prime.
Case 1: Suppose there is an integer $1 < d < n$ that divides n. By assumption, d has a prime divisor p. Since p divides n, p is also a divisor of n. Thus, there is a prime divisor of n. The base case is proven.

Case 2: O.W. there is an integer $1 < d < n$ that divides n. By assumption, d has a prime divisor p. Since p divides n, p is also a divisor of n. Thus, there is a prime divisor of n. The base case is proven.
In both cases, n has a prime divisor. □

Proof by induction!
Theorem: $P(n)$ for every positive integer n.

Proof by induction: Let n be an arbitrary positive integer. Assume that $P(k)$ is true for every positive integer $k < n$. There are several cases to consider:

- Suppose n is \[\ldots \text{blah blah blah} \ldots \]
 Then $P(n)$ is true.
- Suppose n is \[\ldots \text{blah blah blah} \ldots \]
 The inductive hypothesis implies that \[\ldots \text{blah blah blah} \ldots \]
 Thus, $P(n)$ is true.

In each case, we conclude that $P(n)$ is true.