2-3-4 tree

rooted tree

- perfectly balanced

(for each node, both subtrees have same height)

- each node has

 1 element & 2 subtrees

 2 elements & 3 subtrees
3 elements + 4 subtrees

(subtrees are empty at leaves)
subtrees store elements that are $< \text{ than everything in node}$

a) $< \text{ all in node or }$

b) $> \text{ in the gaps between node elements}$
contains: compare against root element, recurse in appropriate subtree

nodes doubles each level & each node contains ≥ 1 elements

=> height ≤ \(\log n \) = \(O(\log n) \)
Insert: search for leaf where element would go

Add element to existing leaf

2 x 4
New element could be the fourth in least an overflow.

1 9

2 4 6 8
Solution: Promote middle element to parent, & split node.
If overflow was the root, just make a new root with middle element.
Remove: Always end up removing an element of a leaf.

\[\times 34 \]
If lead was a 2-node, you underflow!
1-node was no element!
If root, just remove it & make one child the new root.
If adjacent sibling has ≥ 2 elements, move closest element to parent & demote parent element separating you two.
If no adjacent sibling with \(\geq 2 \) elements...
Demote separating parent element & merge with sibling.
Red-black trees.
Emulates a 2-3-4 tree.
Represent each x-node with a couple BST nodes.
2-node

\[\begin{array}{c}
\text{3} \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{3}
\end{array} \]

3-node

\[\begin{array}{c}
\text{2} \\
\text{4}
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\text{2} \\
\text{4}
\end{array} \]

red

(child could be on other side)
black node is the leader

extra links from rep. of x-node point
to reps of children

x-nodes
Properties of red-black binary search tree

1) Every node is red or black
2) Root is black
3) Red nodes have only black children
4) Every path from any node \(v \) to null has
the same A black nodes (2-3-4 tree is perfectly balanced).

Every tree with those properties reps exactly one 2-3-4 tree.

Properties usually taken as definition.
Depth of red-black tree $\leq 2 \lg n$

contains same as always: $O(\log n)$
Insert
Add new leaf.
Make it red to be safe.
If parent is black:
Done!
If no parent:

Color it black:

\[\text{Done!} \]

How we deal with a red node with red parent \(p \).
Two cases:

Case 1:

A misshapen 4-node rep. (p's sibling is black)
Case 1a:
If \(v \) is a left child.

Single rotation. \(p + g \)

Color \(p \) black \(+ \) green.
Case 16.

Double rotation so v has children p and w.
Case 2: p has red sibling!
Looks like an overflowed x-node!

Promote g's element to split by
- color g red
- color p black
- color w black

[Diagram]

- Node g
 - Child p
 - Child w
May need to keep going if \(g \) has red parent.

(color \(g \) black if \(g \) is root)

Insert does \(\leq 1 \) single or double rotation.
Remove:

Comes down to removing node v with ≤ 1 child.

If v is red, it is a leaf. Just remove it.

Done.

If v is black...
If v has a red child c, we have a 3-node rep.

Just make c black to rep a 2-node.
Otherwise, r is lone rep. of a 2-node, that is about to underflow.

Treat situation as. We have a black node u somewhere with 1 child. We want
To remove it, child must be black too.

If \(v \) is root, just delete it, and make child the new root.