Assume we have a universal family of hash functions. If we pick a random function from this family, it is universal if for any pair of keys $x \neq y$:

$$\Pr[h(x) = h(y)] \leq \frac{1}{m}.$$
load factor $\lambda := \frac{n}{m}$

search take $\Theta(1)$ time in expectation, but there will be keys for which using h causes longer search times.

What if λ is really small?

expected \neq colliding pairs:

$\mathbb{E}[h(x) = h(y)] \leq \binom{n}{2} \frac{1}{m} = \frac{n(n-1)}{2m}$
So, if \(m = n^2 \), expected # coll. is \(\leq \frac{1}{2} \).

Could keep rebuilding until no collisions. Expect \(< 2 \) builds, but size is too big.
Perfect hashing:

Top level hash table of size n

If entry u has n_u keys, make it point to table of size n_{u^2}.

It has its own hash function.

Rebuild each little table until no collisions
To get a worst-case $\Theta(1)$ time search.

Total size of little tables:

$$\sum_{\omega} n_\omega^2 = \sum_{\omega} \left(\sum_{\omega} \left[h(x) = \omega \right] \right)^2$$

$$= \sum_{\omega} \left(\sum_{\omega} \left[h(x) = \omega \right] \left[h(y) = \omega \right] \right)^2$$

$$+ 2 \sum_{\omega} \sum_{\omega} \left[h(x) = \omega \right] \left[h(y) = \omega \right]$$

$$= \left(\sum_{\omega} \left[h(x) = \omega \right] \right)^2 +$$

$$2 \sum_{x \neq y} \omega \left[h(x) = \omega \right] \left[h(y) = \omega \right]$$
\[\sum_{x} h(x) = \sum_{y} h(y) + 2 \sum_{x \neq y} \mathbb{E} \left[h(x) = h(y) \right] \]

\[\leq n + 2 \sum_{x \neq y} \mathbb{E} \left[h(x) = h(y) \right] \]

\[\leq n + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n} \]

\[= 2(n-1) \]
Multiplicative Hashing

Use some prime p that's larger than our universe of possible keys.

$(p > 2^{32}$ if keys are Java ints)

For any $a \in \{1, 2, \ldots, p-1\} \land b \in \{0, 1, \ldots, p-1\}$

$h_a(x) := ((ax + b) \mod p) \mod m$
It is the set $p(p-1)$ possible h_{aj}. Pick one uniformly at random.

Lemma: Let $a \in \{1, \ldots, p-1\}$. The set $\{az \pmod{p} \mid z \in \{1, \ldots, p-1\}\}$ has exactly $p-1$ distinct elements, all non-zero.

\Rightarrow multiplication by a modulo p defines a permutation of $\{0, \ldots, p-1\}$.

\Rightarrow multiplicative inverse
of a mod p is well-defined.

Proof: For any \(z \in \{ 1, \ldots, p-1 \} \), neither \(a \) nor \(z \) is divisible by \(p \) (both < \(p \)).

\(p \) is prime, so \(az \) is not divisible by \(p \) either.

So \(az \mod p \neq 0 \).

Suppose \(az \mod p = az' \mod p \) for some \(z, z' \in \{ 1, \ldots, p-1 \} \).

Assume \(z \equiv z' \mod p \).

Algebra to get \(a(z-z') \mod p = 0 \).

So \(z-z' = 0 \), so \(z = z' \).
\[(\text{For each } r = \{1, \ldots, p-1\}, \text{ at most one integer } z \in \{1, \ldots, p-1\} \text{ such that } az \mod p = r.\)\]
Thm: It is universal.
Fix any keys $x \neq y$. All arithmetic mod p, so assume $x, y \in \{0, \ldots, p-1\}$.

For $h_{a,b}(x) = h_{a,b}(y)$, we have
\[(ax + b \mod p = ay + b \mod p) \mod a \mid 0 \mod m\]

Previous lemma implies $ax \mod p \neq ay \mod p$.

Fix any \(r, s \in \{0, \ldots, p-1 \} \) s.t. \(r \neq s \). What is probability that \(ax + b \mod p = r \) and \(ay + b \mod p = s \)?

\[
\iff \quad a(x-y) \equiv (r-s) (\mod p)
\]

Has one solution in \(a \):

\[
a \equiv (r-s) (x-y)^{-1} (\mod p)
\]

Also, \(6 \equiv r - ax (\mod p) \)

So \(a + b \) are fixed by our choice of \(r + s \).
So...

\[p \]
\[\{ (ax+b) \mod p = r + \]
\[a, b \} \]
\[(ay+b) \mod p = s \} \]
\[\frac{1}{p(p-1)} \]

If this happens,

\[h_{a,b}(x) = h_{a,b}(y) \]

if \(r \mod m = s \mod m \).

Need to know how many pairs \((r, s)\) with \(r \neq s\) but
\[r \mod m = s \mod m \].

Fix just \(r\). There are \(|p!/m|\) choices for \(s\).
(floor because \(r \neq s \))

\[p \text{ is prime, so } \frac{p}{m} \text{ is not an integer, so } \]

\[\left\lfloor \frac{p}{m} \right\rfloor = \frac{p}{m} - \frac{1}{m} = \frac{(p-1)}{p(p-1)} \]

\[\frac{p-1}{m} = \frac{m}{m} \text{ pairs } (r,s) \]

\[p \text{ choices for } r, \text{ so } \frac{p(p-1)}{m} \text{ pairs } (r,s) \]

\[\Pr_{a,b} \left[h_{a,b}(x) = h_{a,b}(y) \right] \leq \frac{p(p-1)}{m} \cdot \frac{1}{p(p-1)} \]

\[= \frac{1}{m} \]
Carter–Wegman trick to avoid $t \mod$ operations.

p must be a Mersenne prime, $p = 2^k - 1$ for some k.

Suppose keys a small enough so we can use $p = 2^{31} - 1$.

Consider any $r + y$ s.t.

$$r = y \pmod p$$

$$y = q'(p + 1) + r'$$

↑ quotient ← remainder
public static final int DIGITS = 31;
public static final int mersennep = (1 << DIGITS) - 1;

public static int universalHash(int x, int a, int b, int m) {
 long hashVal = (long) a * x + b;

 hashVal = ((hashVal >> DIGITS) + (hashVal & mersennep));
 if (hashVal >= mersennep) {
 hashVal -= mersennep;
 }

 return (int) hashVal % M;
}