A graph \(G = (V, E) \) is a pair of sets. Vertices: any set you want Edges: If \(G \) is undirected, each edge is an unordered pair of vertices. May denote edge containing \(u \) and \(v \) as \(uv \). If \(G \) is directed, edges are ordered pairs \((u, v) \). I may write it as \(u \rightarrow v \).
Sometimes edges have a value called the weight or cost.

\(u \rightarrow v \) are adjacent if \(uv \in E \).

(If \(G \) is directed, say "\(v \) is adjacent to \(u \)" if \(u \rightarrow v \in E \).)

Edge \(uv \) is incident to \(u \) and vice versa.
V can be any set.

Social network graphs:
vertices are the set of people or users
edges for connects
(u v : u & v are friends)
(u & v : u follows v)

dependency graph:
classes are vertices
u & v : class u is a prereq.
for class v
Representing graphs

will discuss directed graphs mostly, and directed edges \(uv \) treated as a pair \(u \rightarrow v \) or \(v \leftarrow u \)

Two main representations:

Adjacency matrix:

A \(|V| \times |V| \) boolean matrix \(A \)

\(A[u \rightarrow v] \) is true iff \(u \rightarrow v \in E \).
Could use edge weights or # parallel edges instead of true/false

O(D) time to check if $u \geq v \in E$

Uses $\Theta(|V|^2)$ space.

If graph is dense that's fine ($|E| = \Theta(|V|^2)$)

Sparse: $|E| = \Theta(|V|)$
$\Theta(nm)$ time to find incident edges for u.

Adjacency List:

For each vertex u, keep a list of vertices adjacent to u.

Each edge represented once (twice if G undirected).

$\Theta(nm + |E|)$ space. \checkmark
To find k vertices adjacent to u, walk u's list in $\Theta(k + 1)$ time.

$\Theta(k)$ time to check if $u \ni v \in E$. **Rarely comes up!**
We'll usually use an adjacency list.

Example:

Vertex class.
Instances in a doubly-linked list.

Edge class.
All in a doubly-linked lists.

Edges had a couple extra instance variables for weights, "marks," etc.

Vertices had lists of links to incident Edges.
Walk: a sequence of vertices v_1, v_2, \ldots, v_k s.t.

$$v_i \neq v_{i+1}, \forall i \leq k$$

Path: A walk with no repeated vertices.

(Text calls these "paths" + "simple paths")

Undirected graph is connected if there is a path between any pair of vertices.
Directed graph is strongly connected if there is a path from u to v and $(u,v) \in V \times V$.

Only weakly connected if we have to ignore edge direction to find these paths.

u can reach v if there is a path from u to v.

\[\begin{array}{c}
\text{u} \\
\rightarrow \\
\circ \\
\rightarrow \\
\circ \\
\rightarrow \\
\text{v} \\
\end{array} \]
Given \(G = (V,E) \) and some vertex \(s \in V \),

What vertices can be reached from \(s \)?

\(s \) can reach itself with path \(<s> \).

If we can reach \(u \) and \(u \in V \in E \), we can add one more edge to \(su \) walk to get an \(s, v \) walk.

Idea: keep a queue of reachable vertices.
While queue not empty, dequeue u & add all adjacent v to queue.

Cyclo Path except \(v_i = v_k \)

Infinite loop!

So, mark vertices when we visit them. Only enqueue unmarked vertices.
Let's use a stack instead.

Depth-First search (DFS)

```java
void dfs(Vertex v) {
    v.visited = true;
    for each Vertex w adjacent to v {
        if (!w.visited) {
            dfs(w);
        }
    }
}
```

Call `dfs(s)` to mark vertices reachable from `s`.

Runs in $O(V + E)$

(loops over each edge at most once)

If you can only reach `k` edges, then $O(V + k)$ time.

need to unmark first
The reached edges $v \rightarrow w$ where w is not yet marked form a tree rooted at s.

depth-first search tree
void dfsAll() {
 for each Vertex v {
 if (!v.visited) {
 dfs(v);
 }
 }
}

Edges to unmarked vertices form a depth-first spanning forest.

Edges outside forest:

Forward edges: \(u \rightarrow v \) where \(u \) was an ancestor of \(v \) in forest

Cross edges: \(u \rightarrow v \) s.t. neither \(u \) nor \(v \) is an ancestor of each other.
Back edges: \(u \rightarrow v \) where \(v \) is an ancestor of \(u \).

\[
G \text{ has directed cycles iff all } \text{ dfs tree edges have at least one back edge.}
\]
dfs(v) eventually reaches u so \(u \to v \) is a back edge.

Back edge \(u \to v \) means \(\text{dfs}(v) \) started while \(\text{dfs}(u) \) was running.

Add an extra visiting bit to detect back edges and cycles.
void detectCycle(Vertex v) {
 v.visiting = true;
 for each Vertex w adjacent to v {
 if (!w.visited) {
 if (w.visiting) {
 return true;
 }
 detectCycle(w);
 }
 }
 v.visiting = false;
 v.visited = true;
}

boolean detectCycle() {
 for each Vertex v {
 if (!v.visited) {
 detectCycle(v);
 }
 }
 return false;
}