Directed $G = (V, E)$.

Strong component: maximal subset of vertices s.t. u can reach v for each pair in subset.

Contract each component to get **strong component graph** $\text{sc}(G)$ is a DAG.
source: in-degree = 0
sink: out-degree = 0

If we dfs from a vertex of a sink component, we'll mark exactly the vertices of that component.

Algorithm idea:

Somehow find a vertex v in a sink component C.

dfs(v) to mark C "delete" C & recurse

$O(|V| + |E|)$ time in addition
to time to find each vertex v.
Kosaraju & Sharir.

Claim: Last vertex of a postorder lies in a source component.

But we want v in a sink...

$$\text{scc(rev}(G)) = \text{rev(scc}(G))$$

So last vertex in postorder of $\text{rev}(G)$ is in a sink of $\text{scc}(G)$.
Stronger claim: a reverse postorder of G first touch strong components in top. order of $scc(G)$.

Final algorithm:
Compute postorder of $\text{rev}(G)$, putting vertices in a stack.

Do another dfsAll of G, popping from stack for the outer loop.
Each top level call to
strong component. $O(M+|E|)$ time
Problem: Have n strings over an alphabet Σ.

Want to store them and support insert, remove, contains, predecessor balanced.

One solution: BST using the strings as the elements.

$\mathcal{O}(\log n)$ comparisons per operation.

But comparisons take $\mathcal{O}(\min \{r,s,3\})$ time for strings of length $r+s$.
M: max string length.
Each operation takes \(O(M \log n)\) time.

Trie (short for re-trie-val)

A rooted tree.
Each node has a boolean \(t\) and an array of links to children indexed by members of \(\Sigma\).
Each node \(x\) corresponds to a string \(w\) equal to links you
use to reach x.

Boolean is true if w is a member of collection.
If $|E| = O(1)$, a search takes $O(1w)$ time.

insert: Do a search adding nodes not already there. Set Boolean to true at last node.

remove: Set Boolean to false. While current node is false and has no children, remove node & set current to parent.
Has \(N = M_n \) nodes + uses \(\Theta(N, 1) = O(M_n, 1) \) space.

Bad example.
Patricia trio (radix tries):

If a node has one child, merge node with its parent.

Links come with the substring that got merged in.

Still $O(Mn)$ space for strings, but now $\leq 2n-1$ nodes (all non-leaves have ≥ 2 children)
$O(M_n + n|\Sigma|)$ space

(inserts may split edge strings)
String matching:

Given a string T and a non-empty pattern string P.

Goal: Find all positions where P appears in T.

One solution: For each character T_i, check if P starts there. $O(|P| \cdot |T|)$ time.

Knuth-Morris-Pratt:

Build a data structure of size $O(|P|)$ in $O(|P|)$ time. Can use structure to
search T in $O(|T|)$ additional time.

$O(|P| + |T|)$ total
Multi-string searching:

Given T + k patterns P_1, \ldots, P_k.

Want to know if any appear in T.

$m = |T|$

$n := |P_1| + \ldots + |P_k|$

Assume $|E| = O(1)$

"obvious": run KMP once per pattern.

$O(km + n)$ time

scan $\frac{n}{k}$ times \[\text{build data structures} \]
Goal for Monday: $O(m+n)$ time.