Consider the directed graph $G = (V, E)$ with non-negative capacities $c : E \to \mathbb{R}_{\geq 0}$ and an (s, t)-flow $f : E \to \mathbb{R}_{\geq 0}$ that is feasible with respect to c.

(a) Draw the residual graph $G_f = (V_f, E_f)$ for flow f. Be sure to label every edge of G_f with its residual capacity.

Solution:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{residual_graph.png}
\caption{The residual graph G_f.}
\end{figure}

Rubric: 2 points total.

(b) Describe an augmenting path $s = v_0 \to v_1 \to \ldots \to v_r = t$ in G_f by either drawing the path in your residual graph or listing the path's vertices in order.

Solution: There is an augmenting path $s \to a \to c \to d \to t$.

Rubric: 2 points total.
(c) Let $F = \min_i c_f(v_i \rightarrow v_{i+1})$ and let $f' : E \rightarrow \mathbb{R}_{\geq 0}$ be the flow obtained from f by pushing F units through your augmenting path. Draw a new copy of G, and label its edges with the flow values for f'.

Solution:

![Graph](image)

Figure 2. The (s, t)-flow f'.

Rubric: 2 points total.

(d) Draw the residual graph $G_{f'} = (V, E_{f'})$ for flow f'.

Solution:

![Graph](image)

Figure 3. The residual graph $G_{f'}$.
(e) There shouldn’t be any augmenting paths in $G_{f'}$, implying f' is a maximum flow. Draw or list the vertices in S for some minimum (s, t)-cut (S, T).

Solution: $S = \{s, a, b, c\}$, the set of vertices reachable from s.

(f) What is the value of the maximum flow/capacity of the minimum cut?

Solution: The value/capacity is 8.
Consider the following generalization of the bipartite matching problem. You are given an undirected bipartite graph $G = (L \cup R, E)$ where $L \cap R = \emptyset$ and every edge connects a vertex in L to a vertex in R. You are also given a set of non-negative integer limits $\ell : (L \cup R) \to \mathbb{Z}_{\geq 0}$. Describe and analyze an algorithm that returns a maximum size subset of edges $E' \subseteq E$ such that each vertex v is incident to at most $\ell(v)$ edges in E'. As usual, you may express your running time in terms of V and E, the number of vertices and edges in G.

Solution: As in bipartite matching, we’ll create a flow network $G_0 = (V_0, E_0)$ with capacities $c : E_0 \to \mathbb{R}_{\geq 0}$. We start with $V_0 := L \cup R$ and $E_0 = \emptyset$. We add two more vertices s and t to V_0. For each edge $uv \in E$ with $u \in L$ and $v \in R$ we add $u \rightarrow v$ to E_0 and set $c(u \rightarrow v) := 1$. For each vertex $u \in L$, we add an edge $s \rightarrow u$ to E_0 and set $c(s \rightarrow u) := \ell(u)$. For each vertex $v \in R$, we add an edge $v \rightarrow t$ to E_0 and set $c(v \rightarrow t) := \ell(v)$. We compute a maximum (s, t)-flow f^* in G_0 using Orlin’s algorithm. Finally, we return each edge uv with $u \in L$ and $v \in R$ such that $f^*(u \rightarrow v) = 1$.

We’ll now prove the subset of edges E' returned by the algorithm is optimal. First, let E^* be the largest subset of edges respecting the vertex limits. Let f be the following flow: For each edge $uv \in E$ with $u \in L$ and $v \in R$, we let $f(u \rightarrow v) = 1$ if $uv \in E^*$ and $f(u \rightarrow v) = 0$ otherwise. For each $u \in L$, we let $f(s \rightarrow u)$ equal the number of edges in E^* incident to u and define $f(v \rightarrow t)$ similarly for each $v \in R$. This assignment satisfies conversation constraints. Also, each vertex $v \in L \cap R$ is incident to at most $\ell(v)$ edges in E^* so the flow satisfies the capacity constraints. The total amount of the flow leaving s is the number of edges incident to vertices in L, so $|f| = |E^*|$.

Observe f^* must be integral, meaning for each edge $u \rightarrow v$ with $u \in L$ and $v \in R$ has exactly 0 or 1 units of flow. Each vertex $u \in L$ has at most $\ell(u)$ units of flow on its incoming edges, so at most $\ell(u)$ of its outgoing edges contain flow. A similar statement holds for any $v \in R$, so E' is a feasible solution to our problem. Finally, the $|E'|$ is equal to the number of edges containing flow that leave members of L, meaning it equals the total flow leaving s. Therefore, $|E'| = |f^*| \geq |f| = |E^*|$. We have that $|E'|$ is optimal.

Building the flow network, running Orlin’s algorithm, and returning the subset E' takes $O(VE)$ time total.

Rubric: 10 points total. 6 points for the algorithm. 2 points for justification. 2 points for running time analysis.
Suppose you are given a flow network G with integer edge capacities and an integer maximum flow f^* in G. Describe algorithms for the following operations:

Both algorithms should modify f^* so that it is still a maximum flow under the new capacities more quickly than recomputing a maximum flow from scratch.

(a) **Increment**: Increase the capacity of edge e by 1 and update the maximum flow.

Solution: Let $G = (V, E)$ and $c : E \to \mathbb{R}_{\geq 0}$ be the directed graph and capacity function of our flow network. To perform $\text{INCREMENT}(e)$, we set $c(e) \leftarrow c(e) + 1$. Flow f^* is still feasible after this change. We build the residual graph G_{f^*} and find an augmenting path P from s to t if one exists. If no path exists, then f^* is still maximum and we are done. Otherwise, we update f^* by pushing one unit of flow along P and we are done.

Observe e must be part of a minimum cut in order for the minimum cut capacity and maximum flow value to increase. The capacity of e’s cut increases by exactly one in that case, so pushing along a single augmenting path suffices to update f^*. **Building the residual graph and pushing along an arbitrary augmenting path takes $O(E)$ time total.**

Rubric: 1.5 extra credit points total. 1 point for the algorithm and 0.5 points for running time. No credit for an $\Omega(VE)$ time algorithm.

(b) **Decrement**: Decrease the capacity of edge e by 1 and update the maximum flow.

Solution: Let $G = (V, E)$ and $c : E \to \mathbb{R}_{\geq 0}$ be the directed graph and capacity function of our flow network. If e is not saturated by f^* before the decrement, then f^* is still feasible after the decrement. Decreasing capacities can only decrease maximum flow values, so f^* must still be maximum and we are done.

Suppose instead that $f^*(e) = c(e)$. Let $u \to w = e$. We’ll assume $f^*(u \to w) = c(u \to w) \geq 1$ so we still have a flow network after decrementing. We build the residual graph G_{f^*} (note we have not yet decremented $c(u \to w)$, so the residual capacities are defined in terms of the original given capacities). Note edge $w \to u$ is in the residual graph, because $f^*(w \to u) \geq 1$. We search for a path P from u to w in the residual graph. If the path P exists, we push one unit of flow along the cycle $P \circ w \to u$. The same arguments as in the text imply that the new flow is feasible and has the same value as f^*. We return the new flow.

Now suppose instead that no $u \to v$ path P exists. We find a residual graph paths P_1 from t to v and P_2 from u to s. Then we modify f^* by pushing one unit of flow along t to s path $P_1 \circ w \to v \circ P_2$ and return the resulting flow.

We still need to prove the proposed path exists in the second case. Let S be all the vertices reachable from u in G_{f^*}, and let $T = V \setminus S$. Let f' be the flow f^* restricted to the edges with both endpoints in S. For any vertices $v_i \in S$ and $v_t \in T$, we have $f'(v_i \to v_t) = 0$. Therefore, only the flow on outgoing edges of any such v_s has been reduced in f'. For any $v_s \in (S \setminus \{s\})$, we have $\partial f'(v) \leq \partial f^*(v) = 0$. In particular, $\partial f'(u) < 0$, because f' no longer
sends one or more units of flow along $u \rightarrow w$. Finally, $\sum_{v \in S} \partial f'(v) = 0$, so we need $s \in S$ as it is the only possible vertex with positive outgoing flow. We conclude path P_1 exists. A similar argument implies P_2 exists. Walk $P_1 \circ w \rightarrow v \circ P_2$ is a path, because if P_2 contained a vertex x of P_1, then there would have been a walk from u to x to w, contradicting there being no u to w path. Therefore, the algorithm is fine to push a unit of flow from t to s along the path, reducing the flow value by one.

Finally, $t \in T$, because otherwise there would be a residual graph path from u to t to w. Every edge leaving S is saturated and every edge entering S is avoided, so (S, T) is a minimum (s, t)-cut. Reducing the capacity of e by one reduces the minimum cut capacity by one, so the new flow is maximum for the new capacities.

The time to search for these paths and push flow is $O(E)$.

Rubric: 3.5 extra credit points total. 2 points for the algorithm, 1 point for justification, and 0.5 points for running time. No credit for an $\Omega(VE)$ time algorithm.