Main topics for *lecture* include *depth-first_search* and *topological_sort*.

Depth-first Search

- Last week, we discussed graph data structures and graph searching using a procedure called WhateverFirstSearch. Here it is for directed graphs.

```plaintext
WHATEVERFIRSTSEARCH(s):
    put s into the bag
    while the bag is not empty
        take v from the bag
        if v is unmarked
            mark v
            for each edge v → w
                put w into the bag
```

- Depending on what data structure you use for the “bag”, you’ll discover vertices in different orders. For example, a stack leads to a depth-first search or DFS. Intuitively, you keep drilling down down down as you discover new vertices reachable from s, only backing up when you have to.

- However, it’s more common to describe a depth-first search using a recursive procedure.

```plaintext
DFS(v):
    if v is unmarked
        mark v
        for each edge v → w
            DFS(w)
```

- Let’s consider a couple modifications to make the algorithm more efficient in practice and to also let us use DFS for other things. First, we’ll check if a vertex is unmarked before we recursively explore it. Second, we’ll add some unspecified PreVisit and PostVisit routines that can be used for applications. *Write this on the board.*

```plaintext
DFS(v):
    mark v
    PREVISIT(v)
    for each edge vw
        if w is unmarked
            parent(w) ← v
            DFS(w)
    POSTVISIT(v)
```

- As we saw last week, calling DFS(s) on a completely unmarked graph will result in us marking exactly the vertices reachable from s. In an undirected graph, those vertices form exactly s’s connected component. Things are more subtle in a directed graph, though, as
the set of reachable vertices is no symmetric. We may reach different vertices depending on which s we choose.

If we want to guarantee we eventually reach every vertex, we need a wrapper function like we saw last Wednesday. We can also do some preprocessing for the whole graph before running the for loop if we like. [Write this on the board].

We still mark each vertex once and therefore handle each directed edge once, so the running time is $O(V + E)$.

Preorder and Postorder

- So what kind of processing should we do? Well, the applications for DFS all come from the useful order in which it marks vertices.
- To see that, let’s use those procedures to maintain a clock variable that increments every time we start or stop visiting a vertex.

We assign v.pre just after pushing v onto the recursion stack and assign v.post just before popping it from the stack.

- v.pre is often called the starting time of v.
- v.post is often called the finishing time of v.
- and [v.pre, v.post] is called the active interval of v.
• So, because stack timelines are always disjoint or nested, \([u.\text{pre}, u.\text{post}]\) and \([v.\text{pre}, v.\text{post}]\) are either disjoint or nested. In fact, \([u.\text{pre}, u.\text{post}]\) contains \([v.\text{pre}, v.\text{post}]\) if and only if DFS(v) is called during the execution of DFS(u).
• And because we only make recursive calls when there are edges, there must be a directed path from u to v in this case. In particular, the set of vertices on the recursion stack form a directed path in G.
• Here’s an example of a depth-first search with the active intervals drawn below. The forest edges described by the parent variables are the solid ones in the figure.

![Depth-first search example](image)

• Similar to rooted trees, we can use the v.pre labels to get a preorder of the vertices “abfgdchlkpemjn” in that order, and the v.post labels to get a postorder “dkoplhcgbamjnle” in that order.

Classifying Vertices and Edges
• So let’s say we’re in the middle of running a depth-first search. We can learn a lot about the structure of the graph by using this clock variable.
• Eventually, the algorithm will populate v.pre and v.post for every vertex v.
• But suppose we’re midway through running DFS. Fix a vertex v and its eventual pre and post values. But consider the clock at the moment we pause the algorithm. v is one of three states at that time
 • new if clock < v.pre (DFS(v) has not yet been called)
 • active if v.pre ≤ clock < v.post (DFS(v) has been called but not yet returned)
 • finished if v.post ≤ clock (DFS(v) has returned)
• Being active corresponds to a vertex being on the recursion stack. That means the active
vertices form a directed path in G.

- In turn, using these definitions, we can partition the edges into four classes depending on how they interact with the depth-first search tree. Unlike vertices, these classes apply to a run of DFS, not a particular moment in time during the run. Consider edge some $u \rightarrow v$.
 - If v is new when DFS(u) begins, then either we call DFS(v) directly when we iterate over $u \rightarrow v$, or another intermediate recursive call will mark v first. Either way, u.pre $<$ v.pre $<$ v.post $<$ u.post.
 - If DFS(u) calls DFS(v) directly, v.parent = u and $u \rightarrow v$ is called a tree edge.
 - Otherwise, $u \rightarrow v$ is called a forward edge.
 - If v is active when DFS(u) begins, then v is already on the stack, so v.pre $<$ u.pre $<$ u.post $<$ v.post. G has a directed path from v to u.
 - $u \rightarrow v$ is called a back edge.
 - If v is finished when DFS(u) begins, then v.post $<$ u.pre.
 - $u \rightarrow v$ is called a cross edge.
 - Note that u.post $<$ v.pre cannot happen, because we would add v to the stack before finishing with u.
- The exact classification of edges we get depends upon the specific depth-first search trees we get, which depends upon the order in which we iterate over vertices and edges.

![Diagram of DFS](image)

Detecting Cycles

- So why did we go through defining all these things? Well, we now have the tools to solve some real problems. And the solutions are surprisingly easy.
- First, let's suppose we're given a directed graph G. Are there any directed cycles in G?
- Lemma: Directed graph G has a cycle if and only if DFSAll(G) yields a back edge.
 - Suppose there is a back edge $u \rightarrow v$. Then G has a directed path from $v \rightarrow u$. That path plus $u \rightarrow v$ is a cycle.
 - Suppose there is a cycle. Let v be the first vertex of the cycle visited by DFSAll, and let $u \rightarrow v$ be the predecessor of v in the cycle.
 - I claim that DFS(v) will eventually call DFS(u).
• The call to DFS(v) will reach all vertices reachable from v that don’t require going through something already marked. In particular, the cycle itself is such a path to u since v is the first marked vertex.
• But then when DFS(u) is called, we’ll see u → v is a back edge.
• Edge u → v is a back edge if and only if u.post < v.post. So we can compute a post ordering in O(V + E) time and check if that’s the case for any edge u → v. If not, there are no directed cycles. It’s only O(E) more things to do after DFSAll, so still O(V + E) time total.

Topological Sort

• But why do we care about directed cycles? Directed graphs without directed cycles are called directed acyclic graphs or DAGs.
• Every DAG has a topological ordering of its vertices. Formally, its a total order where u < v if there is an edge u → v. Less formally, we want to draw the vertices on a line going left to right so there are no edges going from right to left.
• The normal motivation for finding topological orderings is to decide what order to do certain operations. Imagine we have a Makefile with several targets. We could build a graph with targets as vertices and edges going from each target to those that depend on it being built first. You need to compile everything in a topological order.
• Topological orderings don’t exist if there are directed cycles: in any ordering the rightmost vertex of a cycle would have an edge going back to the left.
• However, if there are no directed cycles, there are no back edges after a DFSAll, meaning u.post > v.post for every edge u → v.
• So, going by decreasing u.post, or reverse post ordering, you get a topological ordering!

• In particular, every directed acyclic graph has a topological ordering.
• If we want to put the vertices in a separate data structure in order, we can add them in reverse postorder by having a clock tick down from V to 1.
Again, it’s just DFSAll with some extra stuff attached, so $O(V + E)$ time.

There are many more applications of depth-first search including using it as a different way to think about or even implement dynamic programming algorithms. Unfortunately, we don’t have time this semester to get into it. See Erickson 6 or CLRS Chapter 22 if you’re interested.

On Wednesday, we’ll move away from graph searching and turn to another fundamental problem: computing minimum weight spanning trees.