Main topics for lecture include depth-first_search and topological_sort.

Depth-first Search

- Last week, we discussed graph data structures and graph searching using a procedure called WhateverFirstSearch. Here it is for directed graphs.

```
WHATEVERFIRSTSEARCH(s):
  put s into the bag
  while the bag is not empty
    take v from the bag
    if v is unmarked
      mark v
      for each edge v→w
        put w into the bag
```

- Depending on what data structure you use for the “bag”, you’ll discover vertices in different orders. For example, a stack leads to a depth-first search or DFS. Intuitively, you keep drilling down down down as you discover new vertices reachable from s, only backing up when you have to.

- However, it’s more common to describe a depth-first search using a recursive procedure.

```
DFS(v):
  if v is unmarked
    mark v
    for each edge v→w
      DFS(w)
```

- Let’s consider a couple modifications to make the algorithm more efficient in practice and to also let us use DFS for other things. First, we’ll check if a vertex is unmarked before we recursively explore it. Second, we’ll add some unspecified PreVisit and PostVisit routines that can be used for applications. [Write this on the board].

```
DFS(v):
  mark v
  PREVISIT(v)
  for each edge vv
    if w is unmarked
      parent(w) ← v
      DFS(w)
  POSTVISIT(v)
```

- As we saw last week, calling DFS(s) on a completely unmarked graph will result in us marking exactly the vertices reachable from s. In an undirected graph, those vertices form exactly s’s connected component. Things are more subtle in a directed graph, though, as
the set of reachable vertices is not symmetric. We may reach different vertices depending on which s we choose.

- If we want to guarantee we eventually reach every vertex, we need a wrapper function like we saw last Wednesday. We can also do some preprocessing for the whole graph before running the for loop if we like. [Write this on the board].

- We still mark each vertex once and therefore handle each directed edge once, so the running time is O(V + E).

Preorder and Postorder

- So what kind of processing should we do? Well, the applications for DFS all come from the useful order in which it marks vertices.
- To see that, let’s use those procedures to maintain a clock variable that increments every time we start or stop visiting a vertex.

- We assign v.pre just after pushing v onto the recursion stack and assign v.post just before popping it from the stack.
 - v.pre is often called the starting time of v.
 - v.post is often called the finishing time of v.
 - and [v.pre, v.post] is called the active interval of v.
So, because stack timelines are always disjoint or nested, \([u.\text{pre}, u.\text{post}]\) and \([v.\text{pre}, v.\text{post}]\) are either disjoint or nested. In fact, \([u.\text{pre}, u.\text{post}]\) contains \([v.\text{pre}, v.\text{post}]\) if and only if DFS(v) is called during the execution of DFS(u).

And because we only make recursive calls when there are edges, there must be a directed path from \(u\) to \(v\) in this case. In particular, the set of vertices on the recursion stack form a directed path in \(G\).

Here’s an example of a depth-first search with the active intervals drawn below. The forest edges described by the parent variables are the solid ones in the figure.

Similar to rooted trees, we can use the \(v.\text{pre}\) labels to get a preordering of the vertices “abfgchdlkpeinjm” in that order, and the \(v.\text{post}\) labels to get a postordering “dkoplhcgfbamjnie” in that order.

Classifying Vertices and Edges

So let’s say we’re in the middle of running a depth-first search. We can learn a lot about the structure of the graph by using this clock variable.

Eventually, the algorithm will populate \(v.\text{pre}\) and \(v.\text{post}\) for every vertex \(v\).

But suppose we’re midway through running DFS. Fix a vertex \(v\) and its eventual pre and post values. But consider the clock at the moment we pause the algorithm. \(v\) is in one of three states at that time.

- **new** if \(\text{clock} < v.\text{pre}\) (DFS(v) has not yet been called)
- **active** if \(v.\text{pre} \leq \text{clock} < v.\text{post}\) (DFS(v) has been called but not yet returned)
- **finished** if \(v.\text{post} \leq \text{clock}\) (DFS(v) has returned)

Being active corresponds to a vertex being on the recursion stack. That means the active
vertices form a directed path in G.

- In turn, using these definitions, we can partition the edges into four classes depending on how they interact with the depth-first search tree. Unlike vertices, these classes apply to a run of DFS, not a particular moment in time during the run. Consider edge some \(u \rightarrow v \).
 - If \(v \) is new when DFS(\(u \)) begins, then either we call DFS(\(v \)) directly when we iterate over \(u \rightarrow v \), or another intermediate recursive call will mark \(v \) first. Either way, \(u.\text{pre} < v.\text{pre} < v.\text{post} < u.\text{post} \).
 - If DFS(\(u \)) calls DFS(\(v \)) directly, \(v.\text{parent} = u \) and \(u \rightarrow v \) is called a tree edge.
 - Otherwise, \(u \rightarrow v \) is called a forward edge.
 - If \(v \) is active when DFS(\(u \)) begins, then \(v \) is already on the stack, so \(v.\text{pre} < u.\text{pre} < u.\text{post} < v.\text{post} \). G has a directed path from \(v \) to \(u \).
 - \(u \rightarrow v \) is called a back edge.
 - If \(v \) is finished when DFS(\(u \)) begins, then \(v.\text{post} < u.\text{pre} \).
 - \(u \rightarrow v \) is called a cross edge.
 - Note that \(u.\text{post} < v.\text{pre} \) cannot happen, because we must add \(v \) to the stack before finishing with \(u \).

- The exact classification of edges we get depends upon the specific depth-first search trees we get, which depends upon the order in which we iterate over vertices and edges.

Detecting Cycles

- So why did we go through defining all these things? Well, we now have the tools to solve some real problems. And the solutions are surprisingly easy.
- First, let’s suppose we’re given a directed graph G. Are there any directed cycles in G?
- Lemma: Directed graph G has a cycle if and only if DFSAll(G) yields a back edge.
 - Suppose there is a back edge \(u \rightarrow v \). Then G has a directed path from \(v \rightarrow u \). That path plus \(u \rightarrow v \) is a cycle.
 - Suppose there is a cycle. Let \(v \) be the first vertex of the cycle visited by DFSAll, and let \(u \rightarrow v \) be the predecessor of \(v \) in the cycle.
 - The call to DFS(\(v \)) will reach all vertices reachable from \(v \) that don’t require going
through something already marked.

- The cycle itself is such a path to u since v is the first marked vertex, so DFS(v) eventually calls DFS(u).
- But then when DFS(u) is called, we'll see u \rightarrow v is a back edge.
- Edge u \rightarrow v is a back edge if and only if u.post < v.post, so here's an algorithm for detecting cycles:
 - Call DFSAll(G) to compute a post ordering in $O(V + E)$ time.
 - For each edge u \rightarrow v
 - If u.post < v.post
 - Return “Cycle!”
 - Return “No cycle.”
- It's only $O(E)$ more things to do after DFSAll, so still $O(V + E)$ time total.

Topological Sort

- But why do we care about directed cycles? Directed graphs without directed cycles are called directed acyclic graphs or DAGs.
- Every DAG has a topological ordering of its vertices. Formally, its a total order where u < v if there is an edge u \rightarrow v. Less formally, we want to draw the vertices on a line going left to right so there are no edges directed from right to left.
- The normal motivation for finding topological orderings is to decide what order to do certain operations. Imagine we have a Makefile with several targets. We could build a graph with targets as vertices and edges going from each target to those that depend on it being built first. You need to compile everything in a topological order.
- Topological orderings don't exist if there are directed cycles: in any ordering the rightmost vertex of a cycle would have an edge going back to the left.
- However, if there are no directed cycles, there are no back edges after a call to DFSAll, meaning u.post > v.post for every edge u \rightarrow v.
- So, going by decreasing u.post, or reverse post ordering, you get a topological ordering!
In particular, every directed acyclic graph has a topological ordering.

If we want to put the vertices in a separate data structure in order, we can add them in reverse postorder by having a clock tick down from \(V \) to 1.

```
TOPOLOGICALSORT(G):
    for all vertices \( v \)
        \( v.status \) ← NEW
        \( clock \) ← \( V \)
    for all vertices \( v \)
        if \( v.status \) = NEW
            \( clock \) ← TOPOLOGICALSORT(v, clock)
    return \( S[1..V] \)
```

Again, it's just DFSAll with some extra stuff attached, so \(O(V + E) \) time.

There are many more applications of depth-first search including using it as a different way to think about or even implement dynamic programming algorithms. Unfortunately, we don't have time this semester to get into it. See Erickson 6 or CLRS Chapter 22 if you're interested.

On Wednesday, we'll move away from graph searching and turn to another fundamental problem: computing minimum weight spanning trees.