CS 4349.400 Final Exam—Problems and Instructions

December 12, 2018

Please read the following instructions carefully before you begin.

Write your name and Net ID on the answer sheets cover page and your Net ID on each
additional page. Answer each of the six questions on the answer sheets provided.

Questions are not necessary given in order of difficulty, so read through them all before
you begin writing!

You're allowed to bring in one 8.5” by 11” piece of paper with notes written or printed on
front and back.

You have two hours and 45 minutes to take the exam.

Please turn in these problem sheets, your answer sheets, scratch paper, and notes at the
end of the exam period.

Writing “I don’t know” and nothing else for any question or lettered part of a question is
worth 25% credit. If you leave the solution blank or write anything else, we will grade
exactly what is written.

If asked to describe an algorithm, you should state your algorithm clearly and briefly
explain its asymptotic running time in big-O notation in terms of the input size. You do
not have to justify (prove) correctness of the algorithm.

Feel free to ask for clarification on any of the problems.

You can do this.

CS 4349.400 Final Exam (Questions) Fall 2018

1. Most graphics hardware includes support for a low-level operation called blit, or block
transfer, which quickly copies a rectangular chunk of a pixel map (a two-dimensional array
of pixel values) from one location to another.

Suppose we want to rotate an n x n pixel map 90° clockwise. One way to do this is to
split the pixel map into four n/2 x n/2 blocks, move each block to its proper position using
a sequence of five blits, and then recursively rotate each block.

C|A
| D|B @
A|lB o>
CcC|(D O|lw

Figure 1. Rotating a pixel maps using blits and recursion.

(a) (5 out of 10) Consider the partially defined procedure ROTATE(X[1 .. n, 1 .. n]) which
takes an n x n pixel map X and rotates it 90°. For simplicity, we assume n is a power
of 2.

RotaTE(X[1..n,1..n]):
ifn>2
{(Move blocks to final positions))
blit X[1..n/2,1..n/2] to temp[1..n/2,1 .. n/2]

((Recursively rotate blocks))
RoTaTE(X[1..n/2,1..n/2])

The procedure is missing four blits and three recursive calls. Fill in the missing lines
to fully define the procedure.

(b) (3 out of 10) Suppose a k x k blit takes O(k?) time. We can express the asymptotic
running time of RoTaTE(X[1 .. n, 1 .. n]) using the recurrence

T(n) =4T(n/2) + n?.

State the running time of ROTATE(X[1 .. n,1 .. n]) using big-O notation by solving
the recurrence.

(c) (2 out of 10) Let B(n) be the number of blits used to rotate an image by calling
RoTATE(X[1 .. n,1 .. n]). Give a recurrence definition for B(n) including the base
case. The recurrence should yield the exact number of blits used. You do not need to
solve this recurrence.

CS 4349.400 Final Exam (Questions) Fall 2018

2. Recall, a subsequence of a sequence A consists of a (not necessarily contiguous) collection
of elements of A, arranged in the same order as they appear in A. If B is a subsequence of
A, then A is a supersequence of B.

In Homework 3, you were asked to design a simple recursive algorithm to compute,
given two sequences A[1..m] and B[1..n], the length of the shortest common supersequence
of A and B. For example, given the strings ALGORITHM and ALTRUISTIC, the algorithm

Today, we’ll design a faster algorithm using dynamic programming. Let SCS(i, j) be
the length of the shortest common supersequence between A[1 .. i] and B[1 .. j]. We can
recursively define SCS(i, j) as follows:

j ifi =0

i ifi>0and j=0
1+min{SCS(i—1,j),SCS(i,j—1)} ifi,j> 0andA[i]# B[j]
1+SCS(i—1,j—1) otherwise

SCS(i,j) =

(a) (2 out of 10) In what kind of memoization data structure should we store the
solutions to all subproblems SCS(i, j)? If you're using a (multidimensional) array, be
sure to state the indices we use. For example, the input to our algorithm is two arrays
A[1..m]andB[1 .. n].

(b) (2 out of 10) What is a good evaluation order for solving the subproblems so each
subproblem is solved after the ones it is dependent upon?

(c) (2 out of 10) What will be the final space and time complexity of the dynamic
programming algorithm? Give your solutions in terms of both m and n.

(d) (4 out of 10) Write the iterative algorithm that computes the length of the shortest
common supersequence between A[1 .. m] and B[1 .. n].

CS 4349.400 Final Exam (Questions) Fall 2018

3. Let X be a set of intervals on the real line. Note that some intervals may have identical
endpoints. A subset of intervals Y C X is called a tiling cover if the intervals in Y cover the
intervals in X, that is, any point that is contained in some intervals in X is also contained
in some interval in Y. The size of a tiling cover is just the number of intervals in the cover.

Figure 2. A set of intervals. The seven shaded intervals form a tiling cover.

We want to compute a smallest tiling cover of X as quickly as possible using a greedy
algorithm.

(a) (4 out of 10) Give a very small counterexample showing the following strategy does
not lead to a smallest tiling cover: Take the longest interval x, remove any points in x
from each of the other intervals (i.e., each interval y becomes y \ x), and recurse.

(b) (4 out of 10) The following strategy does lead to a smallest tiling cover: Let p be the
leftmost point in any interval, and let x* be the longest interval starting at p. Take
interval x*, remove any points in x* from each of the other intervals, and recurse.
We want to do an exchange argument to show this strategy works. Suppose some
smallest tiling cover Y does not contain interval x*. Describe an interval y we can
safely remove from Y and replace with x* so that Y —y + x™ is still a smallest tiling
cover. Briefly describe why your choice is correct.

(c) (2 out of 10) Now suppose each interval x € X has a non-negative weight w(x)
assigned to it. Give a very small counterexample showing the strategy from part (b)
does not find a tiling cover of minimum total weight.

4. Consider the weighted graph pictured below.

fv”%
s

(a) (2.5 out of 10) Draw a depth-first spanning tree rooted at s.
(b) (2.5 out of 10) Draw a breath-first spanning tree rooted at s.
(¢) (2.5 out of 10) Draw a shortest-path tree rooted at s.

(d) (2.5 out of 10) Draw a minimum spanning tree.

Some of these subproblems may have more than one correct answer.

CS 4349.400 Final Exam (Questions) Fall 2018

5. A polygonal path is a sequence of line segments joined end-to-end; the endpoints of these
line segments are called the vertices of the path. The length of a polygonal path is the sum
of the lengths of its segments. A polygonal path with vertices (x;, y1), (X2, ¥2), -, (X1, Vi)
is monotonically increasing if x; < x;; and y; < y;; for every index i—informally, each
vertex of the path is above and to the right of its predecessor.

Figure 3. A monotonically increasing polygonal path with seven vertices through a set of points.

Suppose we are given a set S of n points in the plane, represented as two arrays
X[1..n]and Y[1 .. n] and a subroutine LENGTH(x, y, x’, ') that returns the length of the
segment from (x, y) to (x’,y’). Our goal is to compute the length of the maximum-length
monotonically increasing path with vertices in S that begins at a given point (x, y,) and
ends at a given point (x,, ;). To do so, we’ll perform a reduction to single source shortest
paths in a DAG. We need to begin by constructing a directed acyclic graph G.

(a) (2 out of 10) What should we use for the vertices of G? Which vertex should be used
for s? [Hint: Read the question again.]

(b) (2 out of 10) What should we use for the edges of G? Be sure to describe in which
direction they are oriented. [Hint: A path in G contains a subset of its edges.]

(¢) (2 out of 10) Briefly explain why G is a DAG.

(d) (2 out of 10) What weights should we assign to each edge? [Hint: A longest
monotonically increasing path with vertices in S needs to correspond to a shortest path
in G.]

(e) (2 out of 10) In Homework 7, we saw how single source shortest paths in a DAG can
be computed in O(V + E) time using dynamic programming. In terms of n, how long
does it take to construct G and find single source shortest paths using this O(V + E)
time subroutine?

CS 4349.400

Final Exam (Questions) Fall 2018

6. Both parts ask you to design an algorithm for different problems. Neither part depends
upon the other.

(@

(b)

(4 out of 10) Let G = (V,E) be an arbitrary directed graph with non-negative
capacities ¢ : E — R on the edges and two special vertices s and t. Suppose we
assign a non-negative limit £ : V \ {s, t} — R for the amount of flow that can pass
through each vertex other than s or t. Formally, a flow f : E — R is feasible with
respect to both ¢ and { if for all edges e € E we have f(e) < c(e) and for all vertices
v eV \{s,t} wehave), f(u->v)<L(v).

Describe and analyze an algorithm to compute a graph G’ = (V’, E’) with non-negative
edge capacities ¢’ : E' — Ry but no vertex limits so that the value of the maximum
feasible flow in G’ with respect to ¢’ is equal to the value of the maximum feasible
flow in G with respect to both ¢ and £.

(6 out of 10) Suppose you are taking a particularly intense class in the computer
science department that requires a large time investment to complete the homework
assignments (no comment on what class that might be). You know your own ability
to do the assignemnts very well. For each integer k, you’ll earn Score[k] points for
doing homework k. Unfortunately, completing homework k means you’ll be behind
in your other classes, forcing you to skip the next two assignments to catch up on
your other work (in other words, you cannot do assignments k + 1 or k + 2 if you do
assignment k).

Describe and analyze a dynamic programming algorithm to compute the maximum
total score you can achieve doing homework for this class. The input to your algorithm
is the array Score[1 .. n]. You'll receive full credit for describing a recursive solution,
giving a suitable evaluation order for solving the subproblems, and stating the total
time needed to evaluate those subproblems.

