CS 4349.400 Homework 3

Due Wednesday September 19th, in class

Please answer each of the following questions.

1. Suppose we are given a set S of n items, each with a value and a weight. For any element
x € S, we define two subsets

* S_, is the set of all elements of S whose value is smaller than the value of x.

* S., is the set of all elements of S whose value is larger than the value of x.

For any subset R C S, let w(R) denote the sum of the weights of elements in R. The
weighted median of R is any element x such that w(S_,) < w(S)/2 and w(Ss,) < w(S)/2.

Describe and analyze an algorithm to compute the weighted median of a given weighted
set in O(n) time. Your input consists of two unsorted arrays S[1..n] and W[1..n], where
for each index i, the ith element has value S[i] and weight W[i]. You may assume that all
values are distinct and all weights are positive.

2. In a previous life, you worked as a cashier in the lost Antarctican colony of Nadira, spending
the better part of your day giving change to your customers. Because paper is a very rare
and valuable resource in Antarctica, cashiers were required by law to use the fewest bills
possible whenever they gave change. Thanks to the numerological predilections of one of
its founders, the currency of Nadira, called Dream Dollars, was available in the following
denominations: $1, $4, $7, $13, $28, $52, $91, $365.1

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed
the target amount. For example, to make $122 using the greedy algorithm, we first
take a $91 bill, then a $28 bill, and finally three $1 bills. Give an example where this
greedy algorithm uses more Dream Dollar bills than the minimum possible. [Hint: It
may be easier to write a small program than to work this out by hand.]

(b) Describe a recursive algorithm that computes, given an integer k, the minimum
number of bills needed to make k Dream Dollars. Express your running time using
a recurrence relation. You do not need to solve the running time recurrence to get
full credit. (And don’t worry about making your algorithm fast; just make sure it’s
correct. We’ll learn how to make it fast next week.)

3. A subsequence of a sequence A consists of a (not necessarily contiguous) collection of
elements of A, arranged in the same order as they appear in A. If B is a subsequence of A,
then A is a supersequence of B.

1For more details on the history and culture of Nadira, including images of the various denominations of Dream
Dollars, see http://moneyart.biz/dd/.

http://moneyart.biz/dd/

CS 4349.400 Homework 3 (due September 19) Fall 2018

(a) Describe a simple recursive algorithm to compute, given two sequences A[1..m] and
B[1..n], the length of the longest common subsequence of A and B. For example,
given the strings ALGORITHM and ALTRUISTIC, your algorithm would return 5,
the length of the longest common subsequence ALRIT.

(b) Describe a simple recursive algorithm to compute, given two sequences A[1..m] and

B[1..n], the length of the shortest common supersequence of A and B. For example,
given the strings ALGORITHM and ALTRUISTIC, your algorithm would return 14,

You do not need to analyze the running time of your algorithms for parts (a) and
(b), but you still need to justify correctness. We are not looking for the most efficient
algorithms, but for algorithms with simple and correct recursive structure.

