CS 4349.400 Homework g

Due Wednesday October 17th, in class

Please answer each of the following questions.

1. Recall the class scheduling problem from lecture: We are given two arrays S[1..n] of start
times and F[1..n] of finish times (with 0 < S[i] < F[i] for each i). Our goal is to find a
conflict-free schedule X C {1,--- ,n} of maximum size such that for any pair i, j € X, either
S[i]> F[j]lor S[j]> F[i].

A maximal conflict-free schedule for a set of classes.

(a) Some seemingly good greedy algorithms may not actually give the best solution. For
example, suppose we choose a course x that conflicts with the fewest other courses,
discard all classes that conflict with x, and recurse.! Describe an input example
where this greedy strategy does not produce a maximal conflict-free schedule. [Hint:
The remaining parts do not depend upon this one.]

(b) However, the following strategy does produce a maximal conflict-free schedule: Choose
the course x that starts last, discard all classes that conflict with x, and recurse.
Prove there is a maximal conflict-free schedule that includes the course x that starts
last. Your proof should use an exchange argument similar to those given in the lecture
notes or textbook.

(c) Now, give a short induction proof that the strategy does produce a maximal conflict-
free schedule. You may assume your proof from part (b) is correct; i.e., there is a
maximal conflict-free schedule that includes the course x that starts last.

(d) Finally, describe a simple iterative algorithm to implement the greedy strategy
discussed above. You may want to use Erickson’s GREEDYSCHEDULE(S[1..n], F[1..n])
procedure as a template. What is the running time of your algorithm?

1Thanks, Tyler!



CS 4349.400 Homework 5 (due October 17) Fall 2018

2. Snakes and Ladders is a classic board game, originating in India no later than the 16th
centure. The board consists of an n x n grid of squares, numbered consecutively from 1
to n?, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares in this grid, always in
different rows, are connected by either “snakes” (leading down) or “ladders” (leading up).
Each square can be an endpoint of at most one snake or ladder.

A typical Snakes and Ladders board. Upward straight arrows are ladders; downward wavy
arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k. If the token ends the move at the
top end of a snake, it slides down to the bottom of that snake. Similarly, if the token ends
the move at the bottom end of a ladder, it climbs up to the top of that ladder.

We want to design an algorithm to determine if the token can reach the last
square of the grid. It turns out we can solve this problem using a simple reduction to
WHATEVERFIRSTSEARCH. Specifically, we can build a graph, call WHATEVERFIRSTSEARCH(S)
for some vertex s, and then use the output in some useful way.

(a) What vertices should we use for our graph? [You may want to read about configuration
graphs in the lecture notes. ]

(b) What edges should we use in our graph? Are they directed or undirected edges?

(c) We want to call WHATEVERFIRSTSEARCH(s) on our graph. Which vertex should we
use for s?

(d) WHATEVERFIRSTSEARCH(s) has marked several vertices. How do we use this output
to decide whether or not the last square is reachable?

(e) Suppose we use a bag with O(1) time insertion and removal of edges so that
WHATEVERFIRSTSEARCH runs in O(V + E) time. What is the running time of our
algorithm in terms of n.

(f) Finally, suppose we want to compute the smallest number of moves required for the
token to reach the last square of the grid. Which bag data structure should we use?
Describe a simple way to extract the minimum number of moves from the output of
WHATEVERFIRSTSEARCH.



CS 4349.400 Homework 5 (due October 17) Fall 2018

3. Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every
interval in X contains at least one point in P. Describe and analyze a greedy algorithm to
compute the smallest set of points that stabs X. Assume that your input consists of two
arrays X;[1..n] and Xg[1..n], representing the left and right endpoints of the intervals in
X.

A set of intervals stabbed by four points (shown here as vertical segments).

A substantial portion of your credit will come from proposing a point to include in
your output and giving an exchange argument that your choice appears in some optimal
solution. [Hint: There is a good greedy strategy that looks a lot like the one we used for class
scheduling. ]>

2In fact, the maximal number of conflict-free intervals from X is equal to the minimum number of points for a
stabbing set. You do not need to prove this fact.



