CS 4349.400 Homework 7

Due Wednesday November 7th, in class

Please answer the following questions.

1. You—yes, you—can cause a major economic collapse with the power of graph algorithms!*
The arbitrage business is a money-making scheme that takes advantage of differences
in currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1
yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1
can convert their money from dollars to yen, then from yen to euros, and finally from
euros back to dollars, ending with $(1-120-0.01-1.2) = $1.44! The cycle of currencies
$ - ¥ - € — §is called an arbitrage cycle. Of course, finding and exploiting arbitrage
cycles before the prices are corrected requires extremely fast algorithms.

Suppose n different currencies are traded in your currency market. You are given the
matrix R[1 .. n, 1 .. n] of exchange rates between every pair of currencies: for each i and j,
one unit of currency i can be traded for R[i, j] units of currency j. (Do not assume that
R[i,j]-R[j,i]=1.)

(a) To start, let’s design an algorithm that returns an array M[1 .. n], where M is the

maximum amount of currency i that you can obtain by trading, starting with one unit
of currency 1, assuming there are no arbitrage cycles. We’ll do so using a reduction
to single source shortest paths.
Let G = (V,E,w) be an edge weighted graph where V = {1,---,n} and E is the set of
pairs (i, j) with i # j. What weights should we use so that a shortest path in G from 1
to i is also the best sequence of currency exchanges from 1 to i? [Hint: Remember
your log rules.]

(b) Are some of the edge weights negative?

(c) Which single source shortest path algorithm should we run?

(d) After running the algorithm, how do we compute each M[i] given dist(i)?
(e) Finally, what is the running time of our algorithm in terms of n?

(f) Now, back to our original goal of finding an arbitrage cycle, if one exists. What would
an arbitrage cycle correspond to in the graph G?

1No, you can’t.
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2. Suppose we are given an edge-weighted directed graph G = (V, E,w). We’ll assume that G
contains no negative-length cycles.

When we began discussing all-pairs shortest paths, we considered the following
recursive definition of dist(u, v), the length of the shortest path from vertex u to vertex v:

0 if u=
dist(u,v):{ Hu=v

min,._,, (dist(u,x) +w(x—v)) otherwise

Unfortunately, this recurrence doesn’t work, because to compute dist(u,v), we’ll need
to compute dist(u, x) for some other vertices x. But to compute dist(u, x), we may need
to compute dist(u,v). Fortunately, we avoid this behavior if G is a directed acyclic graph
(a DAG).

(a) Briefly explain why we will not get into an infinite loop evaluating dist(u,v) if G is a
DAG.

(b) Fixavertexs, and suppose we want to compute dist(s, v) for all vertices v in the DAG G.
In order to compute distances from s to every other vertex via dynamic programming,
we need an evaluation order for the different subproblems dist(s,v). Describe a
simple O(V + E) time algorithm to order the vertices so that all of its dependencies
dist(s, x) are already available when it comes time to evaluate dist(s,v). Remember,
reductions to algorithms seen in class are not only allowed, but encouraged.

(c) What is the total time needed to run the algorithm from part (b) and to compute
dist(s,v) for all v € V using dynamic programming? You may assume that every
vertex in G is reachable from s.

3. Let G = (V,E,w) be a connected directed graph with non-negative edge weights. Let H
be a subgraph of G obtained by deleting some edges.

(a) Let t be a vertex of G. Describe an O(E log V) time algorithm to compute the shortest
path distances from each vertex v to t. [Hint: Make a simple modification to the graph
and run Dijkstra’s algorithm.]

(b) Lets and t be vertices of G. Suppose we want to reinsert exactly one edge from G
back into H, so that the shortest path from s to t in the resulting graph is as short as
possible. Describe an O(E log V') time algorithm that chooses the best edge to reinsert.
[Hint: Use the algorithm from part (a).]



