CS 4349.400 Homework R

Due Wednesday October 24th, in class

This is an extra credit assignment worth the same amount as one normal homework. You
are under no obligation to complete this homework if you are satisfied with your midterm
grade, and it will not be used as your one dropped homework should you choose to skip it.

This assignment is meant to give you another chance to go over material from the first half
of the class. The questions are meant to guide you through designing and analyzing a few
algorithms, and you may find them easier than the ones given earlier in the semester.

1. Consider the following generalization of the Blum-Floyd-Pratt-Rivest-Tarjan SELECT algo-
rithm we discussed in class. It partitions the input array into [n/7] blocks of size 7 instead
of [n/5] blocks of size 5 but is otherwise identical. In the pseudocode below, the necessary
modifications are indicated in red.

Mom,SELECT(A[1 .. n], k):

if n <49
use brute force

else
me«[n/7]
fori«—1tom

M[i] < MEDIANOF7(A[7(i — 1)+ 1 .. 7i])

mom, < Mom,SELECT(M[1 .. m],|m/2])

1 < ParTITION(A[1..n], mom-)

ifk<r

return Mom,SELECT(A[1 .. r — 1], k)
elseif k > r

return Mom, SELECT(A[r + 1 .. n],k—r)
else

return momy

Our goal is to analyze the running time of this algorithm.

(a) In the original algorithm (with blocks of size 5), we observed that 3n/10 elements
were smaller than the median-of-medians. How many elements are smaller than the
median-of-medians when we use blocks of size 7?

(b) Using the previous observation, and the fact that the algorithm takes linear time
outside the recursion calls, we observed the worst-case running time of the original
selection algorithm to obey the recurrence T(n) = T(n/5) + T(7n/10) + n. State a
recurrence for the running time of MoOM,SELECT.

(c) To solve the running time recurrence, we need to sum over all node values in the

recursion tree. What is the sum of the nodes values on the ith level of the tree (the
root is at level 0)?

CS 4349.400 Homework R (due October 24) Fall 2018

(d) Finally, express the asymptotic solution to your recurrence using big-O notation and
justify your answer. If your previous answers are correct, then the solution to your
recurrence should be O(n).

2. An inversion in an array A[1 .. n] is a pair of indices i, j such that i < j and A[i] > A[j].
The number of inversions in an n-element array is between O (if the array is sorted) and
(;) (if the array is sorted backward). Our goal is design a divide-and-conquer algorithm
to count the inversions in an n-element array in O(nlogn) time. You may want to read
through each part of this question before you begin.

(a) Suppose you had access to a procedure COUNTCROSSINVERSIONS(A[1 .. n], m) that, in
O(n) time, counts the number of inversions i, jinAwhere 1 <i < mandm+1<j <n.
Describe a divide-and-conquer algorithm for counting inversions that uses one call
to CouNTCROSSINVERSIONS and two recursive calls to itself. You should justify the
correctness of your algorithm, but do not worry about running time for this part.

For this part, you must use the procedure COUNTCROSSINVERSIONS to access A.
You may not compare members of A directly.

(b) Describe how to implement COUNTCROSSINVERSIONS(A[1 .. n],m) to run in O(n)
time assuming the subarrays A[1 .. m] and Alm +1 .. n] are sorted. You may now
access members of A directly. (This problem would be very difficult if you could not!)
[Hint: Modify the MERGE procedure from mergesort.]

(c) Now, use the answers for the previous parts to describe an algorithm for counting
inversions in an n-element array. It is fine, but not necessary, for your algorithm to
change A in some way. Again, justify correctness, but don’t worry about running time
yet. [Hint: Modify mergesort.]

(d) Hopefully, your algorithm runs in O(nlogn) time. Explain the running time of your
algorithm. [Hint: You could use any one of recursion trees, the master method, or an
appeal to how similar it is to an algorithm you saw in class.]

3. Tomorrow is the big dancing contest you've been training for your entire life. You've
obtained an advance copy of the list of n songs that the judges will play during the contest,
in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well.
For each integer k, you know if that you dance to the kth song on the schedule, you will be
awarded exactly Score[k] points, but then you will be physically unable to dance for the
next Wait[k] songs (that is, you cannot dance to songs k + 1 through k + Wait[k]). The
dancer with the highest total score at the end of the night wins the contest, so you want
your total score to be as high as possible.

Our goal is to design an efficient dynamic programming algorithm to compute the
maximum total score you can achieve. The input to this sweet algorithm is the pair of
arrays Score[1 .. n] and Wait[1 .. n].

CS 4349.400 Homework R (due October 24) Fall 2018

(a) Finding the right recursive structure for the problem is the hardest part. As a first
attempt, let’s try the following idea: We need to find a sequence of songs to dance to,
so we should commit to dancing some song i and then guess the next song we should
(and can) dance to. Specify a function, based on the above idea, that we would want
to solve recursively. Do not describe a recurrence for this function yet. [Hint: Look
at the definition of LIS first(i) given in Erickson 3.6, page 13.]

(b) Derive a recurrence for your function. Don’t forget the base case(s).

On second thought, that strategy might be too slow.! Instead, let’s consider the input
sequence of songs and decide if you should dance to the first remaining song based on our
past decisions.

For any i where 1 <i <n+ 1 let MaxTotal(i) be the maximum total score you can
achieve dancing to songs i through n (if i = n+ 1, then there are no songs left to dance to).
You can either dance song i or skip it, so

0 ifi=n+1
MaxTotal(i) = {Score[i] + MaxTotal(i +Wait[i]+ 1),
max

) otherwise
MaxTotal(i+1)

(c¢) In what kind of memoization data structure should we store the solutions to all
subproblems MaxProblem(i)?

(d) What is a good evaluation order for solving the subproblems so each subproblem is
solved after the ones it is dependent upon?

(e) What will be the final space and time complexity of the dynamic programming
algorithm? [Hint: This part may be easier after solving part (f), but you should be able
to do it now using only the recurrence.]

(f) Write the iterative algorithm that computes the maximum possible score you can
achieve. Don’t forget to return the maximum possible score after filling your data
structure.

1The solutions we have in mind would lead to an O(n?) time algorithm.

