
CS 4349.400 Midterm Exam—Problems and Instructions

October 3, 2018

Please read the following instructions carefully before you begin.

• Write your name and Net ID on the answer sheets cover page and your Net ID on each
additional page. Answer each of the four questions on the answer sheets provided. One
sheet was intentionally left blank to provide you with scratch paper.

• Questions are not necessary given in order of difficulty, so read through them all before
you begin writing!

• You’re allowed to bring in one 8.5” by 11” piece of paper with notes written or printed on
front and back.

• You have one hour and 15 minutes to take the exam.

• Please turn in these problem sheets, your answer sheets, scratch paper, and notes at the
end of the exam period.

• Writing “I don’t know” and nothing else for any question or lettered part of a question is
worth 25% credit. If you leave the solution blank or write anything else, we will grade
exactly what is written.

• If asked to describe an algorithm, you should state your algorithm clearly (preferably with
pseudocode) and briefly explain its asymptotic running time in big-O notation in terms
of the input size. You do not have to justify (prove) correctness of algorithms for this
exam.

• Feel free to ask for clarification on any of the problems.

• This exam does not cover greedy algorithms, so do not use them.

1



CS 4349.400 Midterm Exam (Questions) Fall 2018

1. For parts (a) through (c), use Θ-notation to provide asymptotically tight bounds in terms
of n for the solution to the recurrence. Assume each recurrence has a non-trivial base case
of T (n) = Θ(1) for all n≤ n0 where n0 is a suitably large constant. For example, if asked
to solve T (n) = 2T (n/2) + n, then your answer should be Θ(n log n). You do not need to
explain your answers.

(a) (2 out of 10) T (n) = 5T (n/2) + n

(b) (2 out of 10) T (n) = 8T (n/4) + n
p

n

(c) (2 out of 10) T (n) = T (n/4) + T (2n/3) + n

(d) (4 out of 10) Give an asymptotically tight bound for the running time of the algorithm
StoogeSort(A[1..n]) given below.

StoogeSort(A[1..n]):
if n= 2 and A[1]> A[2]

swap A[1]↔ A[2]
else if n> 2

m← d2n/3e
StoogeSort(A[1..m]
StoogeSort(A[n−m+ 1..n])
StoogeSort(A[1..m]

[Hint: Write a recurrence for the running time, and be careful with the size of the
recursive calls.]

2. Recall that the Tower of Hanoi puzzle consists of three pegs and n disks of different sizes.
Initially, all the disks are on one peg, stacked in order by size, with the largest disk on the
bottom and the smallest disk on top. In a single move, you can transfer the highest disk
on any peg to a different peg, except that you may never place a larger disk on top of a
smaller one. The goal is to move all the disks onto one other peg.

Now suppose the pegs are arranged in a row, and you are forbidden to transfer a disk
directly between the left and right pegs in a single move; every move must involve the
middle peg.

1

2

3

4
5

6

7
8

9

Figure 1. The first nine moves in a restricted Tower of Hanoi solution.

2



CS 4349.400 Midterm Exam (Questions) Fall 2018

(a) (7 out of 10) Describe a recursive algorithm to transfer n disks from the left peg to
the right peg under the above restriction. Do not analyze your algorithm for this
part. Simply writing down the algorithm from lecture is worth no credit, because it
moves disks directly between the left and right pegs.

(b) (3 out of 10) It is likely that your algorithm from part (a) uses exactly 3n − 2 moves.
Give a short proof that this is the case. You will not receive credit for this part unless
your algorithm actually uses 3n − 2 moves or your write “I don’t know”. [Hint: Use
induction.]

3. Suppose we are given an array A[1..n] with the special property that A[1] ≥ A[2] and
A[n−1]≤ A[n]. We say that an element A[x] is a local minimum if it is less than or equal to
both its neighbors, or more formally, if A[x − 1]≥ A[x] and A[x]≤ A[x + 1]. For example,
there are six local minima in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9
Î Î Î Î Î Î

We can find a local minimum in O(n) time by scanning through the array. Describe
an algorithm that finds a local minimum in O(log n) time. [Hint: With the given boundary
conditions, the array must have at least one local minimum. Why?]

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different
ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the string PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are
both shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Our goal for this problem is to design an algorithm that given three strings A[1..m],
B[1..n], and C[1..m+ n], determines whether C is a shuffle of A and B.

(a) (5 out of 10) Let IsShu f f le(i, j) be a function that, for any 0≤ i ≤ m and 0≤ j ≤ n,
returns True if C[1..i + j] is a shuffle of A[1..i] and B[1.. j] and False otherwise.
Give a recursive definition of IsShu f f le(i, j) (i.e., a recurrence relation). Don’t forget
the base case(s)!

(b) (5 out of 10) Describe an efficient algorithm for determining if C[1..m+n] is a shuffle
of A[1..m] and B[1..n]. Using big-O notation, state the running time and space usage
of your algorithm. Feel free to use any details from your solution to part (a) you think
are useful.

3


