
CS 4349.006 Homework 3

Due Thursday, September 23 on eLearning

Please solve the following 2 problems.

1. Consider the following somewhat contrived sorting algorithm:

StoogeSort(A[1 .. n]):
if n= 2 and A[1]> A[2]

swap A[1]↔ A[2]
else if n> 2

m← ⌈2n/3⌉
StoogeSort(A[1 .. m])
StoogeSort(A[n−m+ 1 .. n])
StoogeSort(A[1 .. m])

(a) State a recurrence for the running time of StoogeSort(A[1 .. n]). You should assume
it takes constant (O(1)) time to initiate a recursive call StoogeSort(A[x .. y]) for
any pair of indices x and y .

(b) State the running time of StoogeSort in big-Oh notation by solving the recurrence
from part (a).

(c) Prove StoogeSort actually sorts its input.
Advice: Begin by arguing that after the first recursive call to StoogeSort, no element of
rank m+ 1 through n lies in the subarray A[1 .. n−m].

2. Suppose we are given a set S of n items, each with a distinct value and a positive weight.
For any element x ∈ S, we define two subsets

• S<x is the set of elements of S whose value is strictly less than the value of x .
• S>x is the set of elements of S whose value is strictly more than the value of x .

1



CS 4349.006 Homework 3 (due September 23) Fall 2021

For any subset R ⊆ S, let w(R) denote the sum of the weights of elements in R.
The weighted median of R is the unique element x such that w(S<x) ≤ w(S)/2 and
w(S>x) < w(S)/2. In other words, if we were to sort the elements of S by value and then
add up their weights one-by-one in order, the first element to take our sum strictly beyond
half the total weight of S is the weighted median.

Describe and analyze an algorithm to compute the weighted median of a given
weighted set in O(n) time. Your input consists of two unsorted arrays S[1 .. n] and
W [1 .. n], where for each index i, the ith element has value S[i] and weight W [i].

If you find it helpful, you are free to call theO(n) time proceduresMomSelect(A[1 .. n], k)
and Partition(A[1 .. n], p) as defined in class. You may also assume any changes to
S[1 .. n] are accompanied by identical changes to W [1 .. n] so that at all times and for
any index i, value S[i] and weight W [i] both refer to the same weighted element.

Advice: Modify QuickSelect so you 1) are guaranteed to use the median as the pivot and
2) you recursively search the correct subarray to find the weighted median of the input set.
Be careful when you specify which element you are looking for in the recursive call.

2


