
Independents of a graph
is a subset of the vertices

with no edge between two

members of the subset

maximum independent set :

given a graph 6=14 E) .
Find an independent set
of max size

,

•_:¥•

Suppose we're given a tree
1- (an acyclic connected
graph)

w :# vertices

Let's root T
.
Ask is the

root should be in the

max ind set
, ☒

O o o

ooo

If no to root
, recursively

find Max set in each
child swbtrpp

.

If yes to root
,
we cannot

take children
, so find max

iwd sets in grandchild
subtrees

NIS (v) : size 08 maximal
soot in subtree rooted at
V.

MIS Iv)=max{G)WISH,Hw¥¥wM☐H}
"

w is a
child of ,

Subproblems : one per vertex u in
T

.

Memorization : v.MIS for each
node v in T

Dependencies : Children &

grandchildren
.

Eval order : postorder
r : root of T

Need to return MIS Cn)
Space :O In)
Time :O (n)

Returns MISHA

Class Scheduling :
Take as many chasses as

possible so no two overlap
in time

.

fall in one day)

Given S[1. in] : start times
F[1. in] : finish times

chassis starts at Sci) &

finishes at Fci?

loesliidcFC.is)

Want a

maximalconflict.jp#max%1d-aleX.

✗ c- { 1
,
. . ,n } such that

for each in,j EX ,
either sci -FI;] or

SC;] > F[i]

Greedy strategy :

#
not shortest class

Ear lies to finish ✓
Lemma ! At least one maximal
conflict free schedule includes
the class that finishes first

.

Let f be the class that finishes
first

.

Let ✗ be a maximal
conflict free scheduling .

If f- c- X
,
we're done !

Otherwise
,
let g to the first

class to finish int .
5- finishes before .g, so

f does not conflict with

any class in ✗ I {g } .
-9
-

-

-

-

f-
×

So remove g & replace it with
f to get × :
X

'

is conflict free & /X
'

/ =/XT

So
,
we safely grab 5-

as a greedy choice
.

Remove those that conflict

from input set .

"

Recursively
"

find best set

from rest of the input .

olnlogn)→

oln)§

So Olnlogn) total .

Greedy Algorithms :

Backtracking without
going back

.

Make first decision without

trying all choices
.

Recourse
.

Done !

-

easy to think of plausible
greedy algorithms
- much harder to pick a
correct one + justify it

Proof is usually an

exchang.eargumo.ir#:
1) Start with some optimal
solution X

.

If X agrees with our
greedy choice

, great !

2) Otherwise
,

do some kind
of exchange so our choice

goes into the optimal solution .

3)Argue solution is still
valid & optimal after the
exchange .

You usually want to
do dynamic programming
instead

.

I will warn you if you

should be greedy .

