Graph \(G = (V, E) \)

\(V \): vertices: an arbitrary finite set of anything

\(E \): edges: pairs of elements of \(V \) (i.e., vertices)
$u \rightarrow v$ (directed edge)
uv (undirected edge)

If edge e contains vertices $u \leftrightarrow v$:

- $u \leftrightarrow v$ are adjacent
- e is incident to $u \leftrightarrow v$
- u is a neighbor of v (vice versa)
degree of \(u \) is \(\# \) neighbors (assume no parallel edges)

If \(u \rightarrow v \) is a directed edge, \(u \) is the tail and \(v \) is the head.

\(u \) is a predecessor of \(v \)
\(v \) is a successor of \(u \).
in-degree: \# predecessors
out-degree: \# successors

Sometimes \(V \) is \# vertices and \(E \) is \# edges

\textit{e.g., an algo runs in } \(O(V+E) \) \textit{time}
Data Structures

adjacency list:
an array indexed by vertices or their label
elements are lists of adjacent vertices
(successors only if \(G \) is directed)
usually uses singly linked lists for adjacent vertices. Each edge uv appears twice if undirected.
Space: $\Theta(V + E)$

Learn neighbors of u in optimal $O(\text{deg}(u))$ time

degree of u (\# neighbors)

Have to check u's whole list to know if $u \rightarrow v$ exists!
Could use hash table lists...
Adjacency matrix: \(|V| \times |V| \) matrix of 0s and 1s, stored as 2D array \(A \) of \(|V| \times |V| \).

Undirected: \(A[u,v] = 1 \) iff \(uv \in E \)

Directed: \(A[u,v] = 1 \) iff \(u \rightarrow v \in E \)
$\Theta(\nu^2)$ space,
Neighbors of u in $\Theta(\nu)$ time.

Check if uv exists in $\Theta(1)$ time.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Standard adjacency list (linked lists)</th>
<th>Fast adjacency list (hash tables)</th>
<th>Adjacency matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V^2)$</td>
</tr>
<tr>
<td>Test if $uv \in E$</td>
<td>$O(1 + \min{\deg(u), \deg(v)}) = O(V)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$O(1 + \deg(u)) = O(V)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$\Theta(1 + \deg(v)) = O(V)$</td>
<td>$\Theta(V + E)$</td>
<td>$\Theta(V)$</td>
</tr>
<tr>
<td></td>
<td>$O(1)$</td>
<td>$O(1)^*$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$O(1)$</td>
<td>$O(1)^*$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>List v’s (out-)neighbors</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert edge uv</td>
<td>$O(1)$</td>
<td>$O(1)^*$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Delete edge uv</td>
<td>$O(1)$</td>
<td>$O(1)^*$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td></td>
<td>$O(1)^*$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume we're using an adjacency list.
Graph $G' = (V', E')$ is a subgraph of $G = (V, E)$ if $V' \subseteq V$ and $E' \subseteq E$.

walk: a sequence of edges where successive edges share a common vertex

path: a walk with no repeated vertices

G is connected if there is a walk between any pair of vertices
Components: maximal connected subgraphs of G

Given vertex s, a vertex u is reachable from s, if there is an su-walk.

Given s, what is reachable?
Whatever-first search uses a "bag" data structure - supports adding objects, removing added objects (where we came from) on objects

WHATEVERFIRSTSEARCH(s):

- put \((\emptyset, s)\) in bag
- while the bag is not empty
 - take \((p, v)\) from the bag
 - if \(v\) is unmarked
 - mark \(v\)
 - \(parent(v) \leftarrow p\)
 - for each edge \(v\)w
 - put \((v, w)\) into the bag
cycle: a walk that repeats only its first/last vertex

Tree: a connected graph that has no cycles

spanning tree of G: a subgraph of G that is a tree & contains every vertex
Lemma: Whatever First Search(s) marks exactly the vertices reachable from s.

The set of pairs \((v, \text{parent}(v))\) where \(\text{parent}(v) \geq 0\) form a spanning tree of the component containing s.

Proof: Each vertex marked at most once.
Show each reachable vertex is marked by induction on shortest path length from s.

S is marked right away.

If $v \neq s$ is reachable.

Let $s \rightarrow \cdots \rightarrow u \rightarrow v$ be shortest path to v.

u is reachable & closer to s than v.

IH implies u is marked.
So we add \((u,v)\) to \(f\). Guaranteed \(v\) is marked after \((u,v)\) is removed.

We only mark reachable vertices.\(s\) is marked & reachable.

If we mark \(v \neq s\). \(\text{Pair } (\text{parent}(v), v)\) is an edge.

So we marked \(\text{parent}(v)\) first.

By induction on order we mark vertices, \(\text{parent}(v)\) is reachable.
There is a walk
\[S \rightarrow \ldots \rightarrow \text{parent}(v) \rightarrow v \]

Finally there \((\text{parent}(v), v) \)

edges spanning the component of \(s \).

All marked vertices except \(s \) has a parent, so one fewer edge than \(A \) vertices in component.

\[\implies \text{the edges make a tree} \]
WhateverFirstSearch(s):

- put \((\emptyset, s)\) in bag
- while the bag is not empty
 - take \((p, v)\) from the bag
 - if \(v\) is unmarked
 - mark \(v\)
 - \(parent(v) \leftarrow p\)
 - for each edge \(vw\)
 - put \((v, w)\) into the bag

\[\text{Time} \leq 2|E| + 1 \times\]

- \(T\): time to add or remove from bag

\[O(V + E)\text{ time}\]

- put \& pull from bag
Which bag?

Stack: depth-first spanning tree

- long & skinny

Queue: breadth-first (unweighted) spanning tree

Shortest paths!

$O(V + E)$
priority queue: depending on priorities:
 - Prim's algo for MST
 - Dijkstra
 - "widest" paths with min heap:
 \[O(V + E \log E) = O(V + E \log V) \]