Graph $G=(U, E)$
V: vertices: an arbitrary finite set of anything
E: edges: pairs of elements of V (i.e. vertices)
$u \rightarrow v$ (directed edge)
$u V$ (undirected edge)
If edge e contains vertices $u+v$ i
$u \not \sigma v$ are adjacent
e is incident to $u \sigma$
u is a neighbor of v (avice versa)
degree of u is * neigh bors lassume no parallel) edges) If $u \rightarrow v$ is a directed edge, u is the tail t v is the head.
u is a predecessor ${ }^{\text {t }} v$
v is a successor of w.
in-dogree: \# predecessors out-degree'A successors

Somotimes V is $A_{\text {ventices }}$

$$
\downarrow E \text { is Aedges }
$$

e.g," an algo rans in

$$
O(V+E) \text { time" }
$$

Data Structures adjacency list:
an array indexed by vertices or their label
elements are lists of adjacent vertices (successors only if G is directed)
usually uses singly linked lists for adjacent vertices each edge uV appears twice if undirected
$S_{\text {pace }}: \theta(V+E)$
Learn neighbors of u in optimal O(deg(u))
degree Time

Have to check a's whole list to know if $u \rightarrow v$ exists!

Could use hash table lists...

Adjacency matrix:
$|V| x|U|$ matrix of Os $+1 s$. Stored as 2D array $A\left[\left|{ }_{n}\right| v|1,|v|]\right.$ undirected: $A[u, v]=1$ ifs $u v \in E$
directed: $A[u, v]=1$ ifs $u \rightarrow v \in E$
$\theta\left(v^{2}\right)$ space.
Neighbors of u in $\theta(v)$ time.

Check if av exists in $\theta(1)$ Time

Assume were using an adjacency list.

Graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V+E^{\prime} \subseteq E$
walk: a sequence of edges where successive edges share te common vertex
path: a walk with no repeated vertices
G is connected if there is a walk between any pair of vertices

Components: maximal connected subgraphs of G

Given vertex s, a vertex u is reachible from, if there is an su-walk.

Given s, what is reachible?

Whatever -first search:
uses a "bag" data structure
supports adding objects removing added
(where we came from) objects

Whatew $(\varnothing$ FIRSTSEARCH $(s):$	
put (\varnothing, s) in bag	
while the bag is not empty	
take (p, v) from the bag	
if v is unmarked	
mark v	
parent $(v) \leftarrow p$	
for each edge $v w$	
put (v, w) into the bag	$(\star *)$

cycle: a walk that repeats only its Firstllast vertex
tree: a connected graph that has no cycles spanning tree of G : a subgraph of G that is a tree o contains every vertex

Lemma: Whatever FirstScarih(s) marks exactly the vertices reachible from s.
The set of pains
(v, parent (v)) where parent $(v) \not t \varnothing$ form a spanning free of the component containing s.
Proof: Each vertex marked af most once.

Show each reachible vertex is marked by ind action on shortest path length from s.
S is marked right away.
If $v \neq s$ is reachible.
Let $s \rightarrow \cdots \rightarrow u \rightarrow v$ be shortest path to V.

u is reachible + closer to s than v.
IH implies u is marked

So we add (u, v) to tag. Guaranteed v is marked after (u, v) is removed.

We only mark reachible vertices. s is marked + reachitle.
If we mark $v \neq s$
Pair $($ parent $(v), v)$ is an edge.
So we marked parent (r) By induction on order we mark vertices, parent (v) is reachable σ

There is a walk

$$
s \rightarrow \cdots \rightarrow \text { parent }(v) \rightarrow v
$$

Finally the $($ parent $(v), v)$ edges spanning the component of s.
All marked vertices except s has a parent, so one fewer edge than A vertices in component.
\Rightarrow the edges make a Tree

Which bag?
stack: depth-first spanning tree
long o skinny

$$
O(V+E)
$$

Gueae: breadth First (unweighted) spanning tree shortest paths!

$$
O(V+E)
$$

priority queue: depending on priorities:

- Prim's algo for MST
- Dijkstra
- "widest" paths
with min heap:

$$
\begin{aligned}
& O(V+E \log E) \\
& =O(V+E \log V)
\end{aligned}
$$

