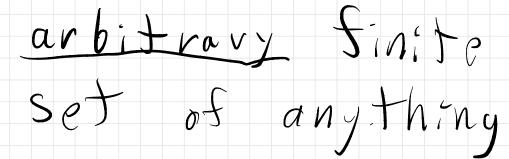
Graph G=(V,E)

V: vertices : an



E: edges: pairs of

elements of V

(i.e. vertices)

 $U \rightarrow V$ (directed edge)

UV (und:rocted edge)

IS edge c contains vertices u dvi

utvare adjacent

e is incident to ut

n is a <u>neighbor</u> of v (dvice versa)

degree of u is

Aneighbors (assume no paralle) edges)

If n >V is a directed

edge, u is the tail t

V is the head.

u is a predecessor it v v is a saccessor of w.

in-logree: # predecessors out-degree: # successors

Sometimes V is Avertices * Eis Aedges

e,g, an algo rans in

O(V+E) + me

Data Structures

adjaconcy list:

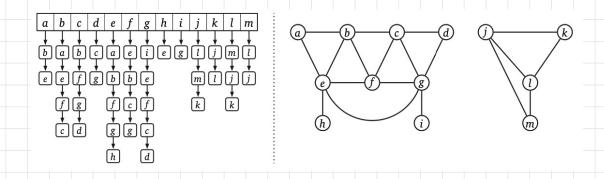
an array indexed by vertices or their

(æbe)

elements are lists of adjacent vertices

(saccessors only is

() is directed)



usually uses singly

linked lists for adjacent vertices

each edge uv appears TNice is andirected

 $S_{pace}: \Theta(V+E)$

Learn neighbors of

- u in optimal Oldeglu))
- Have to check as

whole list to know S

 $u \rightarrow v exists!$

hash Jable Could USP 1:57c...

Adjacency Matrix:

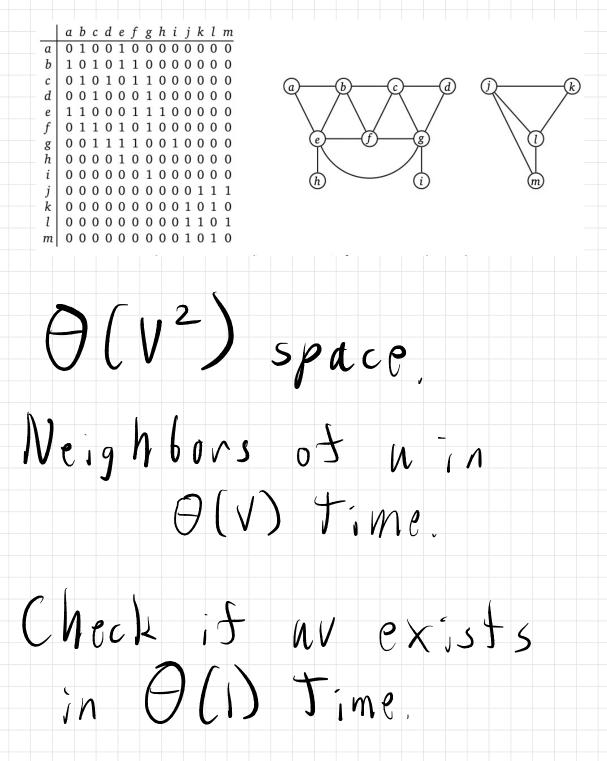
[V] X IV] matrix of

Os + 1s. Stored as 2D array A[1, 1V]]. [V]]

undirected: A[u,v]=1 iff uv E E

directed: A[u,J]=1

 $ifs w \rightarrow v eE$



	Standard adjacency list (linked lists)	Fast adjacency list (hash tables)	Adjacency matrix
Space	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(V^2)$
Test if $uv \in E$	$O(1 + \min\{\deg(u), \deg(v)\}) = O(V)$	<i>O</i> (1)	<i>O</i> (1)
Test if $u \rightarrow v \in E$	$O(1 + \deg(u)) = O(V)$	<i>O</i> (1)	<i>O</i> (1)
.ist $ u$'s (out-)neighbors	$\Theta(1 + \deg(\nu)) = O(V)$	$\Theta(1 + \deg(\nu)) = O(V)$	$\Theta(V)$
List all edges	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(V^2)$
Insert edge uv	O(1)	<i>O</i> (1)*	O(1)
Delete edge uv	$O(\deg(u) + \deg(v)) = O(V)$	O(1)*	<i>O</i> (1)
Assur In a		in expe Wsin y Jis	

Graph G'= (V', E') is

a subgraph of G=(V,E)if $V' \subseteq V \neq E' \subseteq E$

walk: a sequence of edges where successive edges share the common vertex path: a walk with no

repeated vertices

Gis connected if there is

a welle between any pair

of Vertices

<u>Components</u>: maximal Connected subgraphs of G

Gilen vertex s, a vertex

u is reachible from s, if there is an s,u-walk.

Gilen s, what is reachible?

Whatever-first search:

uses a "bag" data

structure

- supports adding objects

removing added

(where we came Srom) objects

WHATEVER FIRST SEARCH(s): put (\emptyset , s) in bag while the bag is not empty take (p, v) from the bag (*) if v is unmarked mark vparent(v) $\leftarrow p$ for each edge vw (†) put (v, w) into the bag (**)

cycle i a walk that repeats only its Sirst/last vertex

tree: a connected graph that has no cycles

spanning tree of G: a subgraph of G that is a tree & contains every vertex

Lemma: Whatever First Scarch(s) Marks exactly the vertices reachible from s.

The set of pairs (v, parent(v)) where parent(v) × Ø Jorm a spanning tree of

the component containing s.

Proof: Each vertex marked at

most once.

Show each reachible vertex is marked by induction on shortest path length from S , S is marked right away. If v≠s is reachible. Let $s \rightarrow \dots \rightarrow u \rightarrow v$ be shortest path to v. s SVV u u is reachible & closer to sthan V. Ilt implies wis marked

So we add (u,v) to bag. Guaranteed V is marked after (u,v) is removed.

We only mark reachible vertices.

sis marked + reachible.

If we mark VZs.

Pair (paront(v), v) is an

edge,

So we marked parent(v) sirst.

By induction on order we

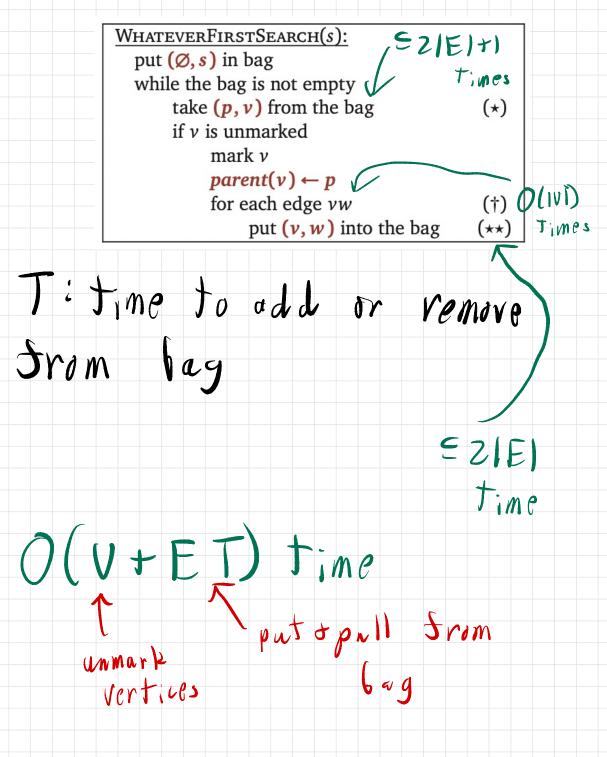
Mark vertices, parentlu) is reachible t

there is a walk $S \rightarrow \dots \rightarrow parent(v) \rightarrow v$

Finally thei (parentlu), V)

edges spanning the component

- of s,
- All marked vertices except s has a parent, so one Sewer edge than A vertices in component. The edges make a Tree



Which bag?

stack: depth-Sirst

spanning tree

long & skinny O(V+E)

queue: Greadth. Sinst

(unweighted) spanning tree

shortest paths!

O(V+E)

priority fucue: depending

on priorities:

- Prim's algo for

MST

- Dijkstra - Widest paths

with min-heap: $O(V+E\log E)$ $\Xi O(V+E\log V)$