
Graph 6=0, E)

V : vertices :
an

arbitrary finite
set of anything

F- : edges :

pairs of

elements of V

( i. e. vertices)



W→ ✓ ( directed edge)

WV ( undirected edge)

If pdgp e contains

vertices utv :

wtv are adjacent
e is incident to art
u is a neighbor otv
( twice versaT



degree of u is

#Ñ6ors I assume
no parallel edges)
If a.→ ✓ is a directed

edge, u is the tail te
v is the head .

u is a predecessor .tv
V is a successor otw .



in - degree :# predecessors
out - degree :# successors

Sometimes V is # vertices
t E is # edges

e.g.

"

an a) go runs in

OCV +E) time
"



Data structures

adjacency list !

an array indexed by
vertices or their
label

elements are lists
of adjacent vertices

( successors only if
G is directed)



usually uses singly
linked lists for

adjacent vortices
'

each edge uv appears
twice if undirected



Space :O (VTE)
Learn neighbors of
U in optimal Oldeglw))

me .

degree
of w l # neighbors)

Have to check w's

whole list to know it

a.→ ✓ exists !



Roald use hash table

lists
.
. .



Adjacency matrix :

IVIXNI matrix of

Os tls
.

stored as

ZD array
A [In 1%1 . ND

undirected : Alu,v]= I

iff uv c- E

directed : Aca
,
D= /

its w→ V EE



⑤ ( V2) space .

Neighbors of win
① ( V) time

.

Check if ur exists
in ⑤ (1) Time

.



÷
expectation

Assume we're using
an adjacency list .



Graph G' = ( V ; E
' ) is

a s#ph of G-- CV, E)
it V' c- V t E

'

EE
.

Walk : a sequence of edges
where successive edges share
to common vertex

path :
a walk with no

repeated vertices

6 is connected if there is
a walk between any pair
of vertices



components " maximal

connected subgraphs of
G

Given vertex s
,
a vertex

u is reach ible from s
,

if there is an sa
-walk

.

Given s
,
what is reachable?



Whatever -first search :

uses a
"

bag
"

data
structure

- supports adding objects
-

removing added
( where we came from ) objects
t



cycle : a walk that repeats
only its first/ last vertex

tree : a connected graph
that has no cycles

spanning tree of G :

a subgraph of G that
is a tree t contains
every vertex



Lemma : Whatever FirstSearchIs)
marks exactly the vertices
reachible from s

.

The set of pairs
( v
, parent (D) where parent G)¥0

form a spanning tree of

the component containing s .
Proof : Each vertex marked at
most once .



Show each rpachible vortex
is marked by induction on
shortest path length from
S ,

S is marked right away .

If ✓ =/ s is reach ible
.

Let s → ii. → a→ ✓ be shortest

path to v.

ing
u is reach i ble t closer to
s than V

.

IH implies u is marked
.



So we add Cuyv) to tag .

Guaranteed V is marked

after ( un ) is removed
.

We only mark reach ible vertices
. .

s is marked & reach ible
.

If we mark ✓ =/ s
.

Pair ( parent ID,v) is an
edge .

So we marked parent (r)first
.

By induction on order we
mark vertices

,
parent ID

is reach i ble t



there is a walk

s → . . . → parent G) → v

Finally the , Ipanentlv) ,v )
edges spanning the component
of S

.

All marked vertices except
s has a parent

,
so one

fewer edge than # vertices
in component .
⇒ the edges make a

tree



c- 215=1+1
times

←
OLWD
Times

T : time to add or remo

from bag

EZIEI
Time

OCV + ET) time
T T

vertices

Pnttpnll from
unmark

bag



Which bag ?

stack : depth-first
spanning tree

- long t skinny
OCV + E)

queue : breadth - first

Inn weighted) spanning tree

shortest paths !

OIVTE)



priority queue : depending
on priorities :

- Prim 's algo for
MST

-

Dijkstra
-

"

widest
"

paths
with min - heap :

OCVTE log E)
= 0 CUTE logv)


