
Depth-first search
starting
f time otv

t
finishing time
of ✓

preorder : sort vertices by start

time

postorder i sort vertices by
finish time



Edge u → v :

W.pro a V. pre
- V. post - w . post

•

W

•✓

If DFS (a) calls DFS lv)

directly , u→v is a
tree edge

aw
. ,u→v is-II.de



V. pre a a.pre - a.post- v.post

•
W

Wsu is a

baukedgev.postaw.pro
↳ u
too

w→v is a cross edge
a. post - v. pre cannot happen !





Given directed graph G.
Are there any directed cycles?

Lemma : Directed graph G
hast (directed) cycle jff
DFSAH (G) yields a back
edge .

-

Suppose there is a back

edge a → v. v.pre < uipreauipostc
V.post

so
.

u is reach iblp from V
✓

•mrmmY•# ← a cycle !



Suppose G has a cycle C.

Let v be the first vertex
WP Visit of C.
Let u be vertex immediately

•

✓ before u

•^a in C.①
DFSIV) visits all reachiblo
vertices where nothing on the

path is marked for
,
by time

vis finished all reach : ble
vertices are marked)



so u gets marked during
DFSCV)

so v. pre < a. pre - a.postc
V.post.

w→v is a back edge
-

Edge a→v is a back edge
ift a. post - v.post. So

1) Compute finishing times
in OIV + E) time via
DFSAHIG) .



2) Check if a.post < v.post
for any edge u→ V. OLE)
3) If so ⇒ cyolp
If not ⇒ no cycle

Total i ON +E)



Directed acyclic graphs CDAG
s)

are those without cycles .

Topological ordering :

Find a total order on

vertices such WCV if
there exists an edge
w → V.

If G has a directed cycle,
there is no topological
ordering .



But if there are no cycles . . .

then no back edges . . .

so a. post > v. post for

every edge a→ ✓

⇒ reverse postorder is
a topological ordering
⇒
every DAG has a

topological ordering

outE) time



Dynamic Programming
Suppose you have a recurrence

to evaluate for a dynamic
programming algorithm . . .

Dependency graph : each
subproblem ( choice of parameters)

is a vertex
.

each edge ✗→y means you
make a call to y while

handling the call to ×



1.Edit lie
, ;) 's dependency

graph )

Dependency graphs must be

acyclic .

Basic memorization is like
a depth-first search of
the dependency graph .

Stores answers in postorder .



The iterative DP algs are
like " hardwiring

"
in a

particularly clean postorder
.



Longest Path : Given directed
graph G :(YE) with

weights on edges I :E→R .

Also given stt .

What is the mad length
of a simple st -path .

(no repeated vertices)

Will assume G is a DAG
.



÷iÉn•+
\

longest#
LLPCV) : longest path length from
V to T

,
too if none exists)

4PM

:{
0 u=t

Max { l(v→w)tLLplw)l
✓ →WEE}

( Max =-D if no edgps ✓→w )

Want to know LLP (s)
.



Dependency graph is G
itself

.

So solve Swfproblems in
postorder for G.

T
OLD per edge

C) ( VTE ) time across all loops


