

W. pre < V. pre < V. post < u. post

V.prc = u.prc = u.post=v.post

wyvis a back edge

V. post < w. pre

NJV is a cross edge

u. post « v. pre connot happen!

Given directed graph G Are there any directed cyclos? Lemma: Directed graph G has a (directed) cycle ;55 DFSAII(G) yields a back edge. - Suppose There is a back

edge $u \rightarrow v$. v, pre<u, pre=u, poste

V. post

so u is reachible from v ministreachible from v u E a cycle!

Suppose G has a cycle C. Let v be the first vertex We Visit of C. Let a be vertex immediately c betdre in C, V betore v DFS(v) visits all reachible vertices where nothing on the path is marked (or by time vis finished all reachible Vertices are marked)

so a gots marked during DFS(v)

so v, precu, precu, posta V, post.

u >v is a back edge

Edge u >v is a back edge ift u.post ev.post. S.

1) Compute Sinishing times

in O(V+E) Time via DFSAN(6).

Directed acyclic graphs (DAG are those without cycles.

Topological ordering:

Find a total order on vertices such u < V if

there exists an edge $W \rightarrow V.$

IS G has a directed cycle,

there is no topological ordering. Ino!

6000000

But if there are no cycles ... then no back edges ... so u. post = v. post Sor every edge u > V => veverse postorder is a topological ordering =7 every DAG has a Jopological ordering

 $\frac{\text{TOPOLOGICALSORT}(G):}{\text{for all vertices } v}$ $v.status \leftarrow \text{New}$ $clock \leftarrow V$ for all vertices v if v.status = New $clock \leftarrow \text{TOPSORTDFS}(v, clock)$ return S[1..V]

TOPSORTDFS(v, clock): $v.status \leftarrow Active$ for each edge $v \rightarrow w$ if w.status = New $clock \leftarrow TopSortDFS(w, clock)$ else if w.status = Activefail gracefully $v.status \leftarrow FINISHED$ $S[clock] \leftarrow v$ $clock \leftarrow clock - 1$ return clock

Dynamic Programming

Suppose you have a recurrence

to evaluate for a dynamic programming algorithm...

Dependency graphi each

subproblem (choice of parameters)

is a vertex.

each edge x > y means you

make a call to y while

handling the call to x

(Ed:) (ì, j) 's graph) dependency

Dependency graphs must be acyclic.

Basic memoization is like a depth-first search of the dependency graph. Stores answers in postorder.

The iterative DP algs are like "hardwiving" in a

particularly clean postordor.

Longest Path: Given directed

graph G=(V,E) with

weights on edges liE-R.

Also given stt.

What is the max length

of a <u>simple</u> s,t-path.

(no repeated vertices)

Will assume Gisa DAG.

LLP(v): longest path longth from V to t, (00 if none exists)

$LLP(v) = \int O v = t$

$\begin{cases} \max \{ l(v \rightarrow w) + LLP(w) | \\ v \rightarrow w \in E \end{cases} \end{cases}$

(max = - co ; f no edges v >w)

Want to know LLP(s).

Dependency graph is Gitself.

So solve subproblems in postorder for G.

 $\underline{\text{LONGESTPATH}(s, t):} \\
\text{for each node } v \text{ in postorder} \\
\text{if } v = t \\
v.LLP \leftarrow 0 \\
\text{else} \\
v.LLP \leftarrow -\infty \\
\text{for each edge } v \rightarrow w \\
v.LLP \leftarrow \max \left\{ v.LLP, \ \ell(v \rightarrow w) + w.LLP \right\} \\
\text{return } s.LLP$

O(V+E) time across all loops