Given connected, undirected graph G=(V,E) with edge weights w: E-R. Assume edge weights are distinct. => Min spanning tree is anique, Goal: Find spanning tree T minimiting Ewle). eet

The alg:

T: the min spanning tree (find this)

Maintain spanning forest

FCT adding edge as we

90.

(Starts as IVI isolated vertices)

Two special kinds at edges

for a particular forest

F

e is <u>useless</u> if Fte has a cycle. (T has no useless edges.) e is <u>safe</u> if it the lightest edge with one endpoint for some component of F, (T has every sate edge.)

Kruskal: Scan all edges in iereasing weight order. add each sate edge you find to F.

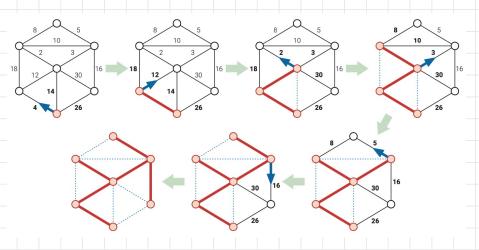
O(Elog V) time

Jarnik [1929], Prim [1957]

Prim-Jarník: Pick one vertex to be in the only non-trivial

component. Repeatedly add the sate edge Sor that

component.

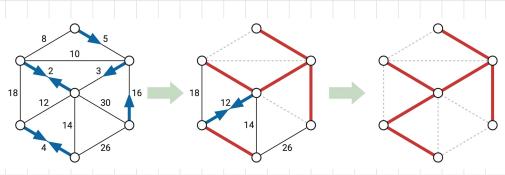


keep a priority quene of edges incident to component. Priority is edge weight. Undil queue is empty, remove edge uv tadd uv to component is safe. Prin-Jarnik WHATEVERFIRSTSEARCH(s): q uene $put (\emptyset, s)$ in bag priority while the bag is not empty fuene Jueue (*) take (p, v) from the bag if v is unmarked mark v $parent(v) \leftarrow p$ (†) for each edge vw put (v, w) into the bag $(\star\star)$ gueup (log E=O(log V) per p. Guene operation) OCElagV) time

Borůvka [1926]: (Sollin [1961])

Add ALL the safe edges

recurse.



 $\begin{array}{l} \underline{ADDALLSAFEEDGES}(E, F, count):\\ \text{for } i \leftarrow 1 \text{ to } count\\ safe[i] \leftarrow \text{NULL}\\ \text{for each edge } uv \in E\\ \text{ if } comp(u) \neq comp(v)\\ \text{ if } safe[comp(u)] = \text{NULL } \text{ or } w(uv) < w(safe[comp(u)])\\ safe[comp(u)] \leftarrow uv\\ \text{ if } safe[comp(v)] = \text{NULL } \text{ or } w(uv) < w(safe[comp(v)])\\ safe[comp(v)] \leftarrow uv\\ \text{ for } i \leftarrow 1 \text{ to } count \end{array}$

add safe[i] to F $\frac{BORŮVKA(V, E):}{F = (V, \emptyset)}$ $count \leftarrow COUNTANDLABEL(F)$ while count > 1 ADDALLSAFEEDGES(E, F, count) count \leftarrow COUNTANDLABEL(F)

return F

Each iteration takes O(E) t:me,

At worst halves # components, so $= O(\log V)$ iterations.

O(ElogV) time

log V is worst case

O(E) time Sov some nice types

of graphs like planar

Can Sind sate edges in parallel.

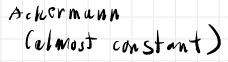
Faster algorithms based on Borůvka.

(Best a)gs are O(E) time

randomized

 $+ O(E \alpha(E))$ Letermin_ istic

INVErsp



New problem! Given directed greph G(V,E) with edge weights w: E->R.

Shortest path from s to t

minimizes Ewle).

Well find <u>all</u> shortest paths from s.

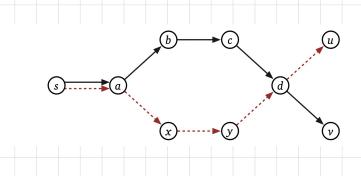
Single Source Shortest Paths (SSSP) problem.

A subject h of a shortest path is a shortest path.

We can "break ties" to be

consistent mour choice

of sinbpaths.



So we get a tree rooted

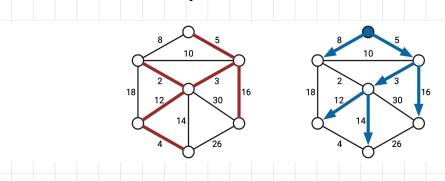
at s; the shortest paths

Tree

Goal: Compute a shortest

paths tree from a given

vertex s,



Is given an undirected graph, can replace each edge uv with $u \rightarrow v \rightarrow v$

of same weight.

Edge weights may be

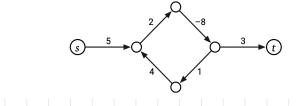
negative..

The algorithms really work

toward "shortest walks"

IS a cycle has negative total weight shortest walks don't exist!

Otherwise, these shortest Walks are shortest paths!



Ford Dantzig, + Minty:

Define two variables for each vertex v:

dist (v) : guess on distance tou

always 3 real distance

-initially, $dist(s) \in 0$ $dist(v) \in \forall v \neq s$

pred(v): what we believe is previous vertex on shortest path to v

-initially, prcd(v)=Null

All SSSP algo start with

 $\frac{\text{INITSSSP}(s):}{dist(s) \leftarrow 0}$ $pred(s) \leftarrow \text{NULL}$ for all vertices $v \neq s$ $dist(v) \leftarrow \infty$ $pred(v) \leftarrow \text{NULL}$

Call an edge u >v "tense"

$if dist(u) + w(u \rightarrow v)$ $\leq dist(v).$

Means dist(v) is too high ...

so relax the edge.

 $\frac{\text{RELAX}(u \rightarrow v):}{\text{dist}(v) \leftarrow \text{dist}(u) + w(u \rightarrow v)}$ $pred(v) \leftarrow u$

FordSSSP(s): INITSSSP(*s*) while there is at least one tense edge RELAX any tense edge Will compute SSSP if there are no negative cycles! (runs forever if s can reach a negative cycle) S>... > pred (pred (v)) > pred(v) \rightarrow will be the shortest path dist(v) will be its distance