Given connected, undirected graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$.
Assume edge weights are distinct.
$\Rightarrow$ Min spanning tree is unique.
Goal: Find spanning tree $T$ minimizing $\sum_{e \in T} w(e)$.

The alg:
$T$ : the min spanning tree (find this)
Maintain spanning forest $F \subset T$, all ing edge as we 90.
(Starts as $|V|$ isolated vertices)

Two special kinds of edges for a particular forest $F$.
$e$ is useless if Foe has a cycle.
( $T$ has no useless edges.)
$e$ is safe if it the lightest edge with one endpoint for some component of $F$,
( $T$ has every sate edge.)

Kruskal: Scan all edges in iereasing weight order, add each sate edge you find to $F$.
$O(E \log V)$ time

Jarnik [1929], Prim $[1957]$
Prim-Jarník: Pick one vertex to be in the only non-trivial component. Repeatedly ald the sate edge for that component

Keep a priority queue of edges incident to component. Priority is edge weight.
Until queue is empty. remove edge uvadd uv to component if safe.
Prim-Jannik
WHATEVERFIRSTSEARCH $(s)$ :
queue $\frac{\text { put }(\varnothing, s) \text { in ag priority }}{\text { while the is not empty }}$ fuene take $(p, v)$ from the bag queue $\quad(\star)$
if $v$ is unmarked
mark $v$
parent $(v) \leftarrow p$
for each edge $v w$
put $(v, w)$ into the bag g $\quad(\dagger)$
queue
$O(E \log V)$ time $(\log E=0(1, g)$ per $p$ pine


Each iteration takes $O(E)$ time.
At worst, halves A components, so $\leq O(\log V)$ iterations. $O(E \mid \sigma g)$ time
$\log V$ is worst case
O(E) time for some "nice" types of graphs like planar
Can find sate edges in parallel. Faster algorithms based on Borúvka.
(Best algs are $O(E)$ time randomized

$$
+O(E \propto \underset{\substack{\uparrow \\ \text { inverse } \\ \text { Ackermann } \\ \text { Col most constant) }}}{\text { is tic }}
$$

New problem!
Given directed graph $G(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$.
Shortest path ${ }^{\text {P from }}$ s to $J$ minimizes $\sum_{e \in p} w(e)$.
Well find all shortest paths from s.
Single Source Shortest Paths (sssp) problem.

A subpath of a shortest path is a shortest path.
We can "break ties" to be con sistent on our choice of $\sin 6$ paths.


So we get a tree rooted at $s$; the shortest paths Tree.

Goal: Compute a shortest paths tree from a given vertex $s$.


If given an undirected graph, can replace each edge uv with $u \rightarrow v \sigma$ $v \rightarrow u$ of same weight.

Edge weights may be negative..
The algorithms really work toward "shortest walks"
If a cycle has negative total weight shortest walks don't exist!
Otherwise, these shortest walks are shortest paths!


Ford, Dantzig, + Minty:
Define two variables for each vertex $v$ :
dist (v): guess on distancetov always $\geq$ real distance

$$
\begin{aligned}
& \text { - initially, } \quad d i s t(s) \leftarrow 0 \\
& \operatorname{dist}(v) \leftarrow \infty \quad \forall v \neq s
\end{aligned}
$$

$\operatorname{pred}(v):$ what we believe is previous vertex on shortest path to $v$

$$
\text { -initially, } \operatorname{prcd}(v)=\mathbb{N}_{a} l l
$$

All SSSP alga start with

Call an edge $u \rightarrow v$ "tense" if dist (u) $+w(u \rightarrow v)$ $<\operatorname{dist}(v)$
Means $\operatorname{dist}(v)$ is too high... so "relax" the edge
$\square$
Relax any tense edge
$\square$
Will compute $\uparrow$ iSp if there are no negative cycles!
Crams forever if $s$ can reach a negative (yale) $s \rightarrow \ldots \rightarrow \operatorname{pred}($ pred $(\nu)) \rightarrow$ prole( $)$ $\rightarrow v$
will be the shortest path dist $(v)$ will be its distance

