
Given connected
, undirected

graph G :(V, E) with

edge weights w :E→R
.

Assume edge weights are
distinct

.

⇒ Min spanning tree is
unique .

Goal : Find spanning tree T

minimizing Ewle)
.

EET



The alg :
T : the min spanning tree

(find this)

Maintain spanning forest
FET
, adding edgp as we

90 .

(starts as IN isolated
vertices)



Two special kinds of edges
for a particular forest
F.

e is useless it Fte has
a cycle .

CT has no useless edges .)

e is sate_ if it the lightest
edge with one endpoint
for some component of F.

IT has⇒ safe edge .)



Kruskal : Scan all edges
in increasing weight order;
add each safe edge you find
to F

.

OIE log V) time



Jarnik [ 19297
,
PrimClair]

Prim - Jarnik : pick one vertex
to be in the only non-trivial

component . Repeatedly add
the safe edge for that
component .



Keep a priority queue of

edges incident to component .

Priority is edge weight .

Until queue is empty,
remove edge artadd uv
to component it safe .
É

queup-
Priority queue
-

queue

Tyrone
0 ( F- log V) time flog E=04ogD perp . queue

operation)



Borivvka 119267 :
(Soll in [ 19617)

Add ALL the safe edges
t recourse

.



Each iteration takes OIE)

time
.

Atworst
,

halves # components
,

so E 0 Clog V) iterations .

OCEIOGV) time

log V is

worstcase-OC.IE) time for some
"

nice
"

types
of graphs like planar

can find sate edges in parallel .
Faster algorithms based on
Borievka

.



(Best a)gs are 01E) time
randomized

& OLE ✗ (E) ) detenmin
A

ist;i

invprsp

Ackermann

(almost constant )



New problem !
Given directed graph G-HE)
with edge weights W :E→R

.

Shortest path P from s to t

minimizes §pwle) .
We'll find all shortest
paths from S

.

Single Source Shortest

Paths CSSSP) problem .



A subpath of a shortest path
is a shortest path .

We can

"

break ties
" to be

consistent on our choice

of sin6paths .

So we got a tree rooted
at s ; the shortestz.at#



Goal : Compute a shortest

paths tree from a given
vertex s

.

If given an undirected
graph, can replace each
edge uv with u→v&

v→u
of same weight .



Edge weights may be

negative . .

The algorithms really work
toward

"

shortest walks
"

If a cycle has negative
total weight, shortest walks
don't exist !

Otherwise
,
these shortest

walks are shortest paths !



Ford
, Dantzig , +Minty :

Define two variables for

each vertex v :

distlv) i guess on distance for

- always I real distance
- initially

,
deistG) to

distlv)←• ties

predlv) : what we believe is

previous vertex on shortest

path to v
-

initially, predG)⇐Null



All SSSP algs start with

call an edge u→v
"

tense
"

it distantw/ a→v)
C distlv)

.

Means distlv) is too high . . .

so
"

relax
"

the edge .



Will compute ^5SSP if
there are no negative
cycles !

Crans forever if s can

reach a negative cycle)
s →

. . .

→ pred (pred (D)→predict
→ v

will be the shortest path
distlv) will be its distance


