Single source shortest paths

Given divocted graph G=(V,E)

t edge weights wiE>Rt

a source vertex seV,

Goal: Compate shortest paths

from s to other vertices.

Terminates with shortest paths & distances ist no negative cycle is reachable trom s.

Lemma: In any instance of Ford SSSP, at any time, for any vertex v, value dist(v) is either no or the longth ot a walk from strv ending with $(pred(v) \rightarrow v)$ Proof: (Using induction on A relaxations)

Last change to dist(v)(ame from relaxing some edge $u \rightarrow v$.

We set $dist(v) \in dist(u) + w(u \ge v)$.

+ prod (v) + u.

By induction dist(u) was length of some s-to-u walk

Adding upv to W we get a walk from s to v of length dist (u) + w(upv) ending

Is we set dist(v) to actual dictance, pred $(v) \Rightarrow v$ is the last edge on shortest path.

=7

Sa well focus on correct

dist values only.

Directed Acyclic Graphs:

-no (negative weight) cycles

(For now), let dist(1) denote the true distance to v

from s.

$dist(v) = \int 0$ if v = s

$\begin{pmatrix} m, n \\ u \neq v \end{pmatrix} (d, st(u) + w(u \neq v)) \\ u \neq v \end{pmatrix}$

eval in topological order!

Lemma: For every vertex v t

non-negative integer i atter

i iterations of the while

loop, we have dist (V) = dist (A)

Proof: Lemma holds for ú=0.

Let W be shortest walk

From s to v with si edges.

By definition W has longth

distei(v)

If W has no edges, V=S ddist_{ei}(u) = 0. dist(s)=0 = dist_{ei}(u)

0.W. let $W \rightarrow v$ be last edge of W. W vs v v v vs v v v v

After i-1 iterations dist $(u) \in dist (u)$. $\in i-1$

In ith iteration, we looked W >V, Either dist(V)=dist(u)+Nlu>V) or w>v was tense, so we set dist(V) = dist(u)+N(u>V).

Either way,

$dist(v) \in Vist(u) + w(u \neq J)$ $\in dist_{i}(u) + w(u \neq J)$ $= dist_{i}(v).$

Lemma still true with

Negative cycles.

But is no negative cycles ...

shortest paths have <101-1

$dist_{[V]-1}(v) \in distance to V.$

can stop atter IVI-1 iterations

Iterations take O(E) time.

O(VE) time (is no neg. cycles)

Othorwise, still some tense

zdge atter IVI-1 sterations

BELLMANFORD(s)INITSSSP(s)repeat V - 1 timesfor every edge $u \rightarrow v$ if $u \rightarrow v$ is tenseRELAX $(u \rightarrow v)$ for every edge $u \rightarrow v$

if $u \rightarrow v$ is tense return "Negative cycle!"

O(VE) time