Single source shortest paths
Given directed graph $G=(V, E)$
o edge weights w: $E \rightarrow \mathbb{R}+$
a source vertex $s \in V$.
Goal: Compute shortest paths from s to other vertices.

For each $v \in \mathbb{N}$, we have -dist (v) : pessimistic guess on distance from s to v - pred (s): predecessor of v in a tentative shortest walk from s to v

InITSSSP $(s):$
$\operatorname{dist}(s) \leftarrow 0$
$\operatorname{pred}(s) \leftarrow$ NULL
for all vertices $v \neq s$
$\operatorname{dist}(v) \leftarrow \infty$
$\operatorname{pred}(v) \leftarrow$ NULL

Say edge $u>v$ is tense if $d_{\text {is }}(u)+w(u \rightarrow v)<l_{\text {is }}(v)$
\square $\frac{\text { FordSSSP(s): }}{\operatorname{InITSSSP}(s)}$

Terminates with shortest paths + distances of no negative cycle is reachable from s.

Lemma: In any instance of Ford SSSP, at any time, for any vertex v, value dist (v) is either ∞ or the length of a walk from str ending with $(\operatorname{pred}(v) \rightarrow v)$?
Proof: (Using induction on A relaxations)

Last change to $\operatorname{dist}(v)$
came from relaxing some edge $u \rightarrow v$.
We set $\operatorname{dist}(J) \leftarrow \operatorname{dist}(u)+$ $w(u>v)$. $+\operatorname{prod}(v) \leftarrow u$.

By ind action dist (u) was length of some s-to-a walk W.

Adding $u \geqslant v$ to W, we get a walk from $s t_{0} v$ of length dist $(\mu)+w(u>v)$ ending $/$

If we set dist (v) to actual dist ance, $\operatorname{pred}(v) \rightarrow v$ is the last edge on shortest path

So wéll focus on correct dist values only.

Directed Acyclic Graphs: - no (negative weight) cycles (For now), let dist (v) denote the true distance to v from s.

$$
\operatorname{dist}(v)= \begin{cases}0 & \text { if } v=s \\ \operatorname{mim}_{u \rightarrow v}(\operatorname{dist}(u)+w(u \rightarrow v))\end{cases}
$$

oval in topological order!

DAGSSSP(s):

for all vertices v in topological order

$$
\begin{aligned}
& \text { if } v=s \\
& \quad \operatorname{dist}(v) \leftarrow 0
\end{aligned}
$$

else

$$
\operatorname{dist}(v) \leftarrow \infty
$$

for all edges $u \rightarrow v$

$$
\begin{array}{rr}
\text { if } \operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v) & \langle\langle i f u \rightarrow v \text { is tense }\rangle\rangle \\
\operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v) & \langle\langle\text { relax } u \rightarrow v\rangle\rangle \\
\hline
\end{array}
$$

O(V+E) Time

DAGSSSP(s):

InitSSSP(s)
for all vertices v in topological order for all edges $u \rightarrow v$
if $u \rightarrow v$ is tense
$\operatorname{Relax}(u \rightarrow v)$

PushDagSSSP(s):

InitSSSP(s)
for all vertices u in topological order for all outgoing edges $u \rightarrow v$ if $u \rightarrow v$ is tense Relax $(u \rightarrow v)$

Always Works: Bellman -Ford
$\frac{\text { BellmanFord (s) }}{\text { InitSSSP(} s \text {) }}$
while there is at least one tense edge
for every edge $u \rightarrow v$
if $u \rightarrow v$ is
$u \rightarrow v$ is tense
$\operatorname{ReLax}(u \rightarrow v)$
Let dist (v) denote the length of a shortest walk in G from s to v that uses $\leq i$ edges $\left(\operatorname{dist}_{\leq 0}(s)=0, \operatorname{dist}_{\leq 0}(J)=\infty\right.$ for all $v \neq s$)

Lemma: For every vertex $v+$ non-negative integer is after i iterations of the while loop, we have $d_{\text {dst }}(v) \leq$ dist $_{\leq j}$. (v) Proof: Lemma holds for $i=0$.

Let W be shortest walk from s to v with s_{i} edges. By definition W has length

$$
d i s t_{c_{i}}(v)
$$

If W has no edges, $v=s+$ $\left.\operatorname{dist}_{t i}(v)=0, \quad \operatorname{dist}_{i s t}\right) \leq 0=\operatorname{dist}_{s i}(v)$

Oi. Let $u \rightarrow v$ be last edge of W, W

After $i-1$ iterations

$$
\operatorname{dist}(u) \leq \operatorname{dist}_{\leq i-1}(u) .
$$

In eth iteration, we looked $u \rightarrow v$.
Either $\operatorname{dist}(v) \leq \operatorname{dist}(u)+w(u s i)$ or $w \rightarrow v$ was Tense, so wo set $\operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(a \rightarrow v)$.

Either way,

$$
\begin{aligned}
\operatorname{dist}(v) & \leq \operatorname{dist}(u)+w(u \rightarrow j) \\
& \leq d_{i s t} \leq i-1 \\
& =d_{\text {ist }} \leq i(v) .
\end{aligned}
$$

Lemma still true with negative cycles.
But if no negative cycles...
shortest paths have $\leq \underline{(v 1-1}$ edges...
$\operatorname{dist}_{\underset{|v|-1}{ }}(v) \leq$ distance to $v . .$.
can stop after (V)-1 iterations

Iterations take $O(E)$ time.

$$
\begin{aligned}
& O(V E) \text { time } \text { if no } \\
& \text { neg, cycles) }
\end{aligned}
$$

Otherwise, still some tense edge after |VI-1 : iterations

BELLMANFORD (s)
InitSSSP (s)
repeat $V-1$ times
for every edge $u \rightarrow v$
if $u \rightarrow v$ is tense
ReLAX $(u \rightarrow v)$
for every edge $u \rightarrow v$
if $u \rightarrow v$ is tense
return "Negative cycle!"

$O(V E)$ time

