Non-negative weights

Dijkstra

\(a \to v \) is tense if \(\text{dist}(u) + w(u \to v) < \text{dist}(v) \)

Two observations:

1) \(u \to v \) can become tense only when \(\text{dist}(u) \) decreases

2) Relaxing \(u \to v \) sets \(\text{dist}(v) \geq \text{dist}(u) \), so relaxing
choose vertex u with lowest $\text{dist}(u)$ should not result in a chain of relaxations that eventually changes $\text{dist}(u)$.

- keep a priority queue of tail vertices u. Only add v to priority queue when $\text{dist}(v)$ drops.
Is Ford SSSP, so it will find shortest paths, even with negative weights! (no proof today) - may be slow with negative weights.
With no negative weights...

Let u_i be the ith vertex returned by Extract Min. Let $d_{i\hat{\omega}}$ be $\text{dist}(u_i)$ at moment $\hat{\omega}$. Extract Min returns u_i. (u_i may $= u_j$ when $i \neq j$)
Lemma: For all \(\hat{\omega} \neq j \), we have
\[d_{\hat{\omega}} \leq d_j. \]

Proof: Fix some \(\hat{\omega} \). Will show \(d_{\hat{\omega}+1} \geq d_{\hat{\omega}} \).

Suppose we relax \(u_{\hat{\omega}} \rightarrow u_{\hat{\omega}+1} \) during with iteration.

Then
\[
d_{\hat{\omega}+1} = \text{dist}(u_{\hat{\omega}+1}) \\
\quad = \text{dist}(u_{\hat{\omega}}) + w(u_{\hat{\omega}} \rightarrow u_{\hat{\omega}+1}) \\
\quad = d_{\hat{\omega}} + w(u_{\hat{\omega}} \rightarrow u_{\hat{\omega}+1}) \\
\geq d_{\hat{\omega}} \] at least 0
Otherwise, \(u_{\hat{w}+1} \) was already in queue.

\[\text{Extract Min chose } u_{\hat{w}}, \text{ so } d_{\hat{w}} = d_{\hat{w}+1}. \]

Lemma: Every vertex \(v \) is extracted at most once.

Proof: Otherwise \(v = u_{\hat{w}} = u_{\hat{w}+1} \) for some \(\hat{w} < j \).

To put \(v \) back in queue after iteration \(\hat{w} \), we must decrease \(\text{dist}(v) \). So \(d_{\hat{w}} < d_{\hat{w}+1} \). \(\square \)
Lemma: When Dijkstra ends, for all vertices v, $dist(v)$ is the distance from s to v.

Proof: By induction on min # edges on a shortest path to v.

Let L_w denote distance from s to w.

Let $P = s \rightarrow \ldots \rightarrow u \rightarrow v$ be shortest path to v with min # edges.
If P has no edges, then $v = s$, $\text{dist}(s) = 0$.

Otherwise, by induction we set $\text{dist}(u)$ to L_u, add u to queue, and later Extract it.

Maybe $\text{dist}(v) \leq \text{dist}(u) + w(u \rightarrow v)$ already.

If not, we will Relax $u \rightarrow v$

Either way, $\text{dist}(v) = \text{dist}(u) + w(u \rightarrow v)$

$= L_u + w(u \rightarrow v)$

$= L_v$
But it can't go lower than L_v, so $\text{dist}(v) = L_v$.

Analysis: Each priority queue operation take $O(\log V)$ time.

Each vertex Extracted or Inserted = once.
Each edge relaxed = once.

$O((V + E)\log V) = O(E\log V)$

assuming time

graph is connected
May go fast even with a few negative edges.

CLRS version always fast but neg edges may break it!
If all weights are 1.

BFS(s):
- **INITSSSP(s)**
- **Push(s)**
 - while the queue is not empty
 - $u \leftarrow \text{Pull}()$
 - for all edges $u \rightarrow v$
 - if $\text{dist}(v) > \text{dist}(u) + 1$
 - $\langle\text{if } u \rightarrow v \text{ is tense}\rangle$
 - $\text{dist}(v) \leftarrow \text{dist}(u) + 1$
 - $\langle\text{relax } u \rightarrow v\rangle$
 - $\text{pred}(v) \leftarrow u$
 - **Push(v)**

$O(V + E)$ Time.
All-pairs shortest paths
Compute $\text{dist}(u, v)$, the distance from u to v for all vertices $u \neq v$.

We'll assume no negative cycles today.

ObviousAPSP(V, E, w):
for every vertex s
\[
\text{dist}[s, \cdot] \leftarrow \text{SSSP}(V, E, w, s)
\]

If using Bellman-Ford, takes
\[
V \cdot O(VE) = O(V^2 E) = O(V^4)
\]
Dynamic Programming

\[\text{dist}(u, v) = \begin{cases}
0 & \text{if } u = v \\
\min_{x \rightarrow v} (\text{dist}(u, x) + w(x \rightarrow v)) & \text{otherwise}
\end{cases} \]

Cannot be used if there are directed cycles!

Makes an infinite loop!

Need a parameter that actually decreases...

Limit which vertices can appear in path
Arbitrarily number vertices from 1 to IV.

\(\pi (u, v, r) \): shortest path from \(u \) to \(v \) where each intermediate (internal, not \(u \) or \(v \)) is numbered at most \(r \).

\(\text{dist}(u, v, r) \): length of \(\pi (u, v, r) \)

\(\pi (u, v, IV) \) is the true \(u-v \) shortest path.
If \(r = 0 \),
\[
\pi(u_j, v, r) \text{ is } u \rightarrow v
\]

O.w.,

\[
\pi(u_j, v, r) = \pi(u_j, v, r-1)
\]

so

\[
dist(u_j, v, r) = \begin{cases}
 w(u \rightarrow v) & \text{if } r = 0 \\
 \min \left\{ \begin{array}{c}
 \{ \text{dist}(u_j, v, r-1) \\
 \text{dist}(u_j, v, r-1) + \\
 \text{dist}(r, v, r-1) \} \end{array} \right\} & \text{o.w.}
\end{cases}
\]

\(\Theta(V^3) \) subproblems in constant time each \(\Rightarrow O(V^3) \) time
KleineAPSP($V, E, w)$:

for all vertices u

 for all vertices v

 $\text{dist}[u, v, 0] \leftarrow w(u \rightarrow v)$

for $r \leftarrow 1$ to V

 for all vertices u

 for all vertices v

 if $\text{dist}[u, v, r - 1] < \text{dist}[u, r, r - 1] + \text{dist}[r, v, r - 1]$

 $\text{dist}[u, v, r] \leftarrow \text{dist}[u, v, r - 1]$

 else

 $\text{dist}[u, v, r] \leftarrow \text{dist}[u, r, r - 1] + \text{dist}[r, v, r - 1]$

FloydWarshall($V, E, w)$:

for all vertices u

 for all vertices v

 $\text{dist}[u, v] \leftarrow w(u \rightarrow v)$

for all vertices r

 for all vertices u

 for all vertices v

 if $\text{dist}[u, v] > \text{dist}[u, r] + \text{dist}[r, v]$

 $\text{dist}[u, v] \leftarrow \text{dist}[u, r] + \text{dist}[r, v]$