Non-negative weights
Dijkstra
$a \rightarrow v$ is terse if $\operatorname{dist}(n)+w(u \rightarrow 1)$

$$
<\operatorname{dist}(v)
$$

Two observations:

1) $u \rightarrow v$ can become tense only when dist (u) decreases
2) Relaxing $u \rightarrow v$ sets $\operatorname{dist}(v) \geq \operatorname{dist}(u)$, so relaxing
$u>v$ with lowest list (u) shouldn't result in a chain of relaxations that eventually changes dist (u).

- Keep a priority queue of fail) vertices u. Only add \checkmark fo priority queue when dist (v) drops

Is FordSSSP, so it will find shortest paths even with negative weights! (wo prot today) - may be dow with negative weights

With no negative weights...

Let w_{i} be the it vertex ret urned by Extract Min.
Let d_{i} be $\operatorname{dist}\left(u_{i}\right)$ at moment Extract Min returns a_{i} $\left(a_{i} \underline{\text { may }}=a_{j}\right.$ when $\left.i \neq j\right)$

Lemma: For all ice we have $d_{i} \leq d_{j}$.
Proof: Fix some i. Will show $d_{i+1} \geq d_{i}$.
Suppose we relax $u_{i} \rightarrow u_{i+1}$ during with iteration.
Then $d_{i+1}=d_{i s t}\left(u_{i+1}\right)$

$$
\begin{aligned}
& =\operatorname{dist}\left(u_{i}\right)+w\left(u_{i} \rightarrow u_{i+1}\right) \\
& =l_{i}+w\left(u_{\dot{i}} \rightarrow u_{j+1}\right) \\
& \geq d_{i} \quad \text { at lost } 0
\end{aligned}
$$

Otherwise, $u_{\text {int }}$ was already is queue.
Extract Min chose u_{j}, so $d_{i} \leq d_{i+1}$.
Lemma: Every vertex v is extracted at most once. Proof: Otherwise $v=u_{i}=u_{j}$ for some ic;
To pat v back in quene after iteration j_{j} we mast decrease $\operatorname{dist}(J)^{\circ} \perp^{\text {contradiction! }}$ $S_{j} d i<d$

Lemma: When Dijkstra ends, for all vertices v, dist (v) is the distance from s to v.
Proof: By induction on min A edges on a shortest path t_{0} V.

Let L_{W} denote distance from s Jo w.
Let $P=s \rightarrow_{\ldots} \rightarrow_{u} \rightarrow_{v} \quad b_{e}$ shortest path fo v with min A edges.

If p has no edges, then $v=s$, dist $(s)=0$
Otherwise by induction we set $\operatorname{dist}(u)$ to L_{*}, add u to queue, t later Extract it.

$$
\text { Maybe dist }(v) \subseteq \operatorname{dis}_{i s t}(w)+w t_{u r v}
$$ already.

If not.. we will Relax $u \rightarrow v$ Ether way,

$$
\begin{aligned}
\text { max j }_{\text {a }} s t(v) & =\operatorname{dist}(u)+w(u \rightarrow v) \\
& =L_{a}+w(u \rightarrow v) \\
& =L_{v}
\end{aligned}
$$

But it can'l go lower than L_{v},so $\operatorname{dist}(v)=L_{v}$.

Analysis: Each priority quene operation take $O(\log V)$ time.
Each vertex Extracted α Inserted \leqslant once.
Each edge relaxed \subseteq once.

$$
\begin{gathered}
O((V+E) \log V)=O(E \log V) \\
\text { assuming Time } \\
\text { graph is connected }
\end{gathered}
$$

May be fast even with a few negative edges.

CLRS version always fast but neg edges may break it!

If all weights are 1.

$O(V+E)$ time.

Alluairs shortest paths Compute dist (u, v), the distance from u to v for all vertices u av.
Weill assume no negative cycles today.

If using Bellman-Ford, takes

$$
\begin{aligned}
V \cdot O(V E) & =O\left(V^{2} E\right) \\
& =O\left(V^{4}\right)
\end{aligned}
$$

Dynamic Programming

$$
\operatorname{dist}(u, v)= \begin{cases}0 & \text { if } u=v \\ \min _{x \rightarrow v}(\operatorname{dist}(u, x)+w(x \rightarrow v)) & \text { otherwise }\end{cases}
$$

Cannot be used if there are directed cycles!
Makes an infinite loop!
Need a parameter that actuall. decreases...

Limit which vertices can appear in path

Arbitrarily number vertices from I to IV)
$\pi(u, v, r):=$ shortest path from u fo v where each intermediate (internal, not u or v)
is numbered at most r. dist $(n, v, r):=$ length of $\pi(u, v, r)$ $\pi(u, v, \mid v))$ is the true $u-v$ shortest path

If $r=0$.
$\pi(u, v, r)$ is $u \rightarrow v$

$\theta\left(v^{3}\right)$ subproblems in constant time each $\Rightarrow O\left(v^{3}\right)$ time

KleeneAPSP(V, E, w):

for all vertices u

for all vertices v

$$
\operatorname{dist}[u, v, 0] \leftarrow w(u \rightarrow v)
$$

for $r \leftarrow 1$ to V
for all vertices u for all vertices v

$$
\begin{aligned}
& \text { if } \operatorname{dist}[u, v, r-1]<\operatorname{dist}[u, r, r-1]+\operatorname{dist}[r, v, r-1] \\
& \quad \operatorname{dist}[u, v, r] \leftarrow \operatorname{dist}[u, v, r-1]
\end{aligned}
$$

else

$$
\operatorname{dist}[u, v, r] \leftarrow \operatorname{dist}[u, r, r-1]+\operatorname{dist}[r, v, r-1]
$$

FLOYDWARSHALL (V, E, w) :

for all vertices u
for all vertices v

$$
\operatorname{dist}[u, v] \leftarrow w(u \rightarrow v)
$$

for all vertices r
for all vertices u for all vertices v

$$
\begin{aligned}
& \text { if } \operatorname{dist}[[u, v]>\operatorname{dist}[u, r]+\operatorname{dist}[r, v] \\
& \quad \operatorname{dist}[u, v] \leftarrow \operatorname{dist}[u, r]+\operatorname{dist}[r, v]
\end{aligned}
$$

