Given graph $G = (V, E)$ with edge capacities $c : E \rightarrow \mathbb{R} \geq 0$.

Theorem: Value of max flow $= \text{capacity of min cut}$.
Start with any feasible flow \(f: E \rightarrow \mathbb{R} \geq 0 \).

\[
\begin{align*}
\text{Residual capacities} \quad & C_f(n \rightarrow v) = \begin{cases}
-c(n \rightarrow v) & \text{if } v \rightleftharpoons e \\
\delta(v \rightarrow w) & \text{if } v \rightarrow w \in E \\
0 & \text{o.w.}
\end{cases}
\end{align*}
\]
Residual graph $G_f = (V, E_f)$

of those with $\neq 0$ residual capacity

If G_f has a path P from s to t, create a new flow f' by "pushing" flow along P.
Push \(\min \) residual capacity for edges on \(p \).

Value of flow increases by that much.

\[\Rightarrow f \text{ was not maximum} \]

If no path from \(s \) to \(t \).

Let \(S \) be vertices in \(G \) you can reach from \(s \).

Let \(T = V \setminus S \).
For all $u \in S$, $v \in T$. If $u \nrightarrow v$ in E, then

$O = c_\sigma(u \nrightarrow v) = c(u \nrightarrow v) - f(u \nrightarrow v)$

it's saturated.

If $v \nrightarrow u$ in E, then

$O = c_\sigma(u \nrightarrow v) = f(v \nrightarrow v)$

it's avoided.
So f is max value + (S, T) is min capacity with $|\mathcal{E}| = ||S_T||$.
Ford-Fulkerson Augmenting Path Algorithm:

Start with an all-zero flow \mathbf{f}, $(\mathbf{f}(e)=0 \; \forall e \in \mathcal{E})$.

Repeatedly build residual graph and push flow along an augmenting path.

When you can't anymore, flow is maximum.
Analysis with integer capacities.

- Initial flow is all integers (0)

- If we assume each flow is all integers, residual capacities are integers

- So we always push a positive integer amount of flow

- So new flow is all integers
We push \(\geq 1 \) unit of flow each iteration.

Let \(f^* \) be the max value flow.

There are \(\leq 1f^* \) iterations.

O(E) time per iteration (build res. graph + search).

So, \(O(E1f^*) \) time total.
If \(f \) may not be polynomial in input size, may be exponential in \(A \) bits given as input.

Could do \(X \) iterations if you always push on \(u \rightarrow v \) or \(v \rightarrow u \).
"pseudo-polynomial time" - polynomial in terms of input numbers but not the input size (\# bits)

If \(|S| \) could be small depending on application
Algorithm may never terminate if given real-valued capacities.
Could imply infinite loops if from rounding floating point values!
Edmonds - Karp: “Fat pipes”

Choose the augmenting path with largest bottleneck capacity (maximize amount pushed)

\(O(E \log V) \) per iteration

Amount you have left to push decreases by a \(\frac{1}{E} \) fraction each iteration.
\[\Rightarrow 1E_1 \cdot \ln |V|^\circ \text{ iterations} \]

(with integer capacities)

\[O(E^2 \log V \log |V|^\circ) \]
Edmonds - Karp 2:
Choose augmenting path with smallest # edges.
O(E) time per iteration (use BFS in G_f)
Let f be the flow after i iterations.

Let $G = G_i$.

So $G = G_0$.

Let level (v) be unweighted shortest path distance to v in G_i.
Lemma: \(\text{level}_u(v) \geq \text{level}_{\bar{u}}(v) \)

For all \(v \neq u \).

Proof: \(\text{level}_u(s) = 0 = \text{level}_{\bar{u}-1}(s) \) if.

Otherwise, let \(s \rightarrow \cdots \rightarrow u \rightarrow v \) be shortest path to \(v \) in \(G_{\bar{u}} \).

\(\text{level}_u(v) = \text{level}_{\bar{u}}(u) + 1 \).

By induction on \(\text{level}_{\bar{u}} \),

\(\text{level}_u(u) \geq \text{level}_{\bar{u}-1}(u) \).
If $u \rightarrow v$ is in G,
\[
\text{level}_{\hat{\omega}^{-1}}(u) + 1 \geq \text{level}_{\hat{\omega}^{-1}}(v)
\]

Otherwise, we must have push along $v \rightarrow u$. So shortest path to u used $v \rightarrow u$, so
\[
\text{level}_{\hat{\omega}^{-1}}(u) + 1 > \text{level}_{\hat{\omega}^{-1}}(u) - 1 = \text{level}_{\hat{\omega}^{-1}}(v)
\]

Either way,
\[
\text{level}_{\hat{\omega}}(v) = \text{level}_{\hat{\omega}}(u) + 1 \\
\geq \text{level}_{\hat{\omega}^{-1}}(u) + 1 \\
\geq \text{level}_{\hat{\omega}^{-1}}(v)
\]
Lemma: Any edge \(u \rightarrow v \) disappears from residual graph \(E \) \(\leq |V| / 2 \) times.

Proof: Suppose \(u \rightarrow v \) in \(G_i \), but not in \(G_{i+1} \) but not in \(G_{i+1} \ldots G_j \).

\(u \rightarrow v \) in \(i \)th augmenting path, so \(\text{level}_u (v) = \text{level}_u (u) + 1 \).

\(v \rightarrow u \) in \(j \)th augmenting path, so \(\text{level}_j (u) = \text{level}_j (v) + 1 \).
So

\[\text{level}_j(u) = \text{level}_j(v) + 1 \]

\[\geq \text{level}_j(v) + 1 \]

\[= \text{level}_j(v) + 2 \]

So distance from \(s \) to \(u \) increased by 2.

Max path length is \(1|V| - 1 \)

So \(u \leftrightarrow v \) leaves \(\leq |V|^{1/2} \times \) times.
So EILNIV1z itera
tions,
$O(E^2V)$ time
(any ≥ 0 real capacities)
"strongly polynomial time"

Dinitz (70s): $O(VEV^2)$ with
almost same algorithm

Orlin (2012): $O(VE)$ time

cite this