Given graph G=(V,E)

tedge capacities

Thm: Value of max

 $c: E \rightarrow \mathcal{R}_{zo'}$

= capacity of Slow

min cat.

Start with any Seasible Slow F:E >RZO $\begin{array}{c} 10/20 \\ \bullet \\ s \\ 10/10 \\ 0/10 \\$ f(e)/c(e)181=10 sidwal capacities if $C(n \rightarrow v) = (c(n \rightarrow v) - f(n \rightarrow v)) \in \mathbb{E}$ $S(v \rightarrow u) = S(v \rightarrow u)$ if $v \rightarrow u \in \mathbb{E}$ 0 v, w. Residual

Residual graph G=(V,Es) E those with ZO residual capacity

Push min vesidual cupacity

for edges on P,

IS no path from s to

Let 5 be vertices in

Gyru can reach from s.

Let T=V\S.

se S t & S so (SJT) is an (s,t) - cut

for all ueS, veT.

If u >v e E, then

 $O = c_{f}(u \neq v) = c(u \neq v) - f(u \neq v)$

it's saturated,

If vou in E, then

 $O = c_s(u \neq J) = f(u \neq J)$ it's avoided

So fis max valuet (S,T) is min capacity with 18)=11 S,T)1.

tord-Fulkerson Augmenting

Path Algorithm:

Start with a all-zero flow f, $(S(e)=0 \forall e \in E)$

Repeatedly build residual graph & push flow along

an augmenting path.

When you can't anymore,

flow is maximum.

Analysis with integer

capacities.

-initial flow is all integers (0)

-if we assume each flow

fis all integers,

residual capacifies are integers

- so We always push a positive integer amount of Slow - so new flow is all integers

We push 2) unit of flow

coch iteration

let 5 6c the max value

- Slow.
- There are EIST iterations.

O(E) time per iteration

- (build res. graph & search)
- So. $O(EIS^{*})$ time totel

18) may not 6e polynomial in input size

may be exponential in A bits given as input $\rightarrow S \qquad 1 \qquad X \qquad t \rightarrow X$ Could do X iterations if you always push on u >v or v >u.

pseudo-polynomial time".

polynomial in terms of

input <u>numbers</u> but not the input size (#6:ts)

depending on application

Algorithm May Nover

terminate is given veal-valued capacities.

Could imply infinite loops if from roundind floating point values!

tdmonds-Karp: "Fat pipes"

Choose the augmenting

path with largest bottleneck capacity (maximize amount pushed)

O(E log V) per iteration

Amount you have lott to

push decreases by a

/IEI Fraction each

iteration,

=7 [El·In]fol iterations

(with integer capacities)

$O(E^2 \log V \log S^{\bullet})$

Time Weakly polynomial

Edmands-Karp2:

Choose augmenting path with smallest & edges.

O(E) time per iteration (use BFS in G)

Lemma: level. (v) z levell (v) Jor all v Ji.

 θ root: leve). (s) = 0 = level. (s)

Otherwise let s > ... > u > v

be chartest path to vin Gi

(evc). (v) = level. (u) + l.

By induction on level, level; $(u) \ge level$. (u)

If $u \geqslant v$ is in G_{u-1} , level (u) + 1 = level (v) \tilde{u} - 1 (u) + 1 = level (v)

Otherwise, we must have push along V Ju. So shortest path to a used v > u so $\frac{|e||}{|u|} = \frac{|u|}{|u|} = \frac{|e|||}{|u|} = \frac{|e||||}{|u|} = \frac{|e||||}{|u|} = \frac{|e||||}{|u|} = \frac{|e|||||}{|u|} = \frac{|e|||||}{|u|} = \frac{|e||||}{|u|} = \frac{|e|||$

Either way, $level_{i}(v) = level_{i}(u) + l$ $Z level_{i}(u) + l$ $Z level_{i-1}(u) + l$ $Z level_{i-1}(v)$

$\sum_{i=1}^{n} |eve|(u) = |eve|(v) + i$ $\sum_{i=1}^{n} |eve|(v) + i$ $\sum_{i=1}^{n} |eve|(u) + 2$

So distance from s to a increased by Z.

Max path length is IVI-)

So usu leaves E 1/2

times

So = IEIIVI/z itorations,

$O(E^2V)$ time

(any 30 real capacities)

strongly polynomial time

Dinitz (70.): OCEV²) with almost same algorithm

Orlin (2012): 0 (VE) time

cite this