Given graph $G=(U, F)$ Hedge capacities

$$
c: E \rightarrow R_{\geq 0}
$$

Thai $V_{a} l$ we of max flow = capacity of min cat.

Start with any fees ide flow $\quad f: E \rightarrow \mathbb{A}_{\geq 0}$

$f(e) / c(e)$
$181=10$
Residual capacities

Residual graph $G_{f}=\left(V, E_{f}\right)$
E_{f} those with $\not \geqslant 0$ residual capacity
If G_{f} has a path p from s to f create a new flow f by "pushing" flow along P.

Pash min residual capacity for edges on P,
Val wo of flow increases by that mach.
$\Rightarrow f$ was not maximum
If no path from s to †...
Let S be vertices in G_{f} you can reach from s. Let $T=V \backslash S$.

$$
\begin{aligned}
& s \in S^{+\notin S_{j o}}(S, T) \text { is an } \\
& (s, t)-\operatorname{cut}
\end{aligned}
$$

For all $u \in S, v \in T$.
If $u \rightarrow v \in E$, then

$$
0=c_{f}(u \rightarrow v)=c(u \rightarrow v)-f(u \rightarrow v)
$$

it's saturated.
If $v \rightarrow u$ in E, then

$$
O=c_{f}(u \rightarrow v)=f(v \rightarrow v)
$$

it's avoided

So f is max valued (S, T) is min capacity with $|\delta|=\|S, T\|$.

Ford-Falkerson Augmenting Path Algorithm:
Start with a all-zero flow $f, \quad(f(e)=0 \quad \forall e \in E)$.
Repeatedly build residual graph t push flow along an augmenting path.
When you cant anymore, flow is maximum.

Analysis with integer capacities.
-initial flow is all integers (0)

- if we assume each flow f is all integers,
residual capacities are integers
- so we always push a positive integer amount of flow
-so new flow is all integers

We push $\geqslant 1$ unit of flow each iteration
Let f^{*} be the max value flow.
There are $\leqslant\left|f^{\infty}\right|$ iterations. $O(E)$ time per iteration (build res.greph + search)
so.. $\left.O\left(E \mid f^{*}\right)\right)$ time total
18^{\star}) may not be polynomial in input size may be exponential in A bits given as input

Could do X iterations if yon always push on $u \rightarrow v$ or $v>u$!
"pseudo-polynomial time". polynomial in terms of input numbers but not the input size (\#6its)
$\left|f^{*}\right|$ could be small depending on application

Algorithm may never terminate if given real-valued capacities.
Could imply infinite loops if from round ind floating point values!

Edmond - Karp: "Fat pipes"
Choose the augmenting path with largest bottleneck capacity (maximize amount pushed)
$O(E \log V)$ per iteration
Amount you have lott to push decreases by a 1/|E| fraction each iteration.
$\Rightarrow|E| \cdot \ln \left|f^{0}\right|$ iterations (with integer capacities)

$$
O\left(E^{2} \log V \log \left|f^{*}\right|\right)
$$

Time
"weakly polynomial"

Edmands - $\mathrm{k}_{\text {app }}$ 2:
Choose augmenting path with smallest A edges. $O(E)$ time per iteration lase BFS in G_{f})

Let f_{i} the flow aster i iterations. Let $G=G_{\text {. }}$.

So $G=G_{0}$.
Let level. (v) be unweighted shortest "path distance to v is G_{i}.

Lemma: level ${ }_{i}(v) \geq \operatorname{levell}_{i-1}(v)$
for all vol
Proof: leven $)_{i}(s)=0=\operatorname{level}_{\dot{w}-1}(s)$
Otherwise, let $s \rightarrow \ldots \rightarrow u \rightarrow v$
be shortest path to v in G_{u}

$$
\operatorname{leva}_{i}(v)=\operatorname{level}_{i}(u)+1 .
$$

By ind action on level i,
level: $(u) \geq$ level $_{i-1}^{u}(u)$

If $u \rightarrow v$ is in $G_{\dot{u}-1}$)

$$
\text { |eve| } \dot{\bar{j}}-1(u)+1 \geq \text { eve }_{\dot{j}-1}^{\dot{u}-1}(v)
$$

Otherwise, we mast have push along $v \rightarrow u$. So shortest path to u used $v>u$ so

$$
\begin{aligned}
\text { level }_{i-1}(u)+1 & >\text { level }_{\dot{i-1}}(a)-1 \\
& =\text { level }_{i-1}(v)
\end{aligned}
$$

Either way

$$
\begin{aligned}
\text { level }_{i}(v) & =\text { level } \\
& \geq \operatorname{level}_{i-1}(u)+1 \\
& \geq \operatorname{level}_{i-1}(v)
\end{aligned}
$$

Lemma: Any edge $u>v$ disappears from residual graph $\subseteq|V| / 2$ times.
Proof: Suppose $u>v$ in G_{i}
$+G_{j+1}$ but not in $G_{i+1} \ldots G_{j}$
$u \rightarrow v$ in th augmenting path so level $(v)=\operatorname{level}_{u}(u)+1$
$v \rightarrow w$ in j th augmenting path so $\operatorname{level}_{j}(u)=\operatorname{level}_{j}(v)+$)
S_{0}

$$
\begin{aligned}
& \text { level }_{j}(u)=\text { level. }(v)+1 \\
& \geq|e v e| \\
&=\mid \text { eve } \\
& u
\end{aligned}(u)+2
$$

So distance from s to a increased by 2.
Max path length is $|V|-I$
So $u \rightarrow v$ leaves $\leq^{N V} / 2$ times.
$S_{0} \leq|E||V| / 2$ iterations
$O\left(E^{2} V\right)$ time
(any ≥ 0 real capacities)
"strongly polynomial time"
Dinita (70s): O(EV ${ }^{2}$ with
almost same algorithm
Or lin (2012): O(VE) time
cite this

