
Given graph 6=0, E)
& edge capacities
c : E → Reo '

Thin : Value of Max

5- low = capacity of
min cat .



start with any feasible

flow 5- iE→R
, ,

5- (e)/cle)
181=10

Residual capacities i:*

Cg(n→v)= {
clan -Huh *

8lv→w) if v→ueE
0 Oiw

.



Residual graph GIN, Eg)
Eg those with 7- 0 residual

capacity
It G
,

has a path P
from s to t

,
create

a new flow t
'

by
"

pushing
"

flow along P .



Push min residual
capacity

for edges on P
.

Value of flow increases

by that much .
⇒ 8 was not maximum

If no path from s to

t.io
Let 5 be vertices in

Gg you can reach from s
.

Let 1- = V15 .



se S
1- ¢5

,
so (SI) is an

Cst ) - out

For all uo-S.ve -1.
If a.→ v c- E

,
then

O=g(u→v)=du→v) - fCu→v)
its saturated

.

If ✓ → u in E
,
then

0=qlu→v)= flu→ v)
it 's avoided



So f is max value &

CST) is min capacity
with 181=115,1-11

.



Ford- Fulkerson Augmenting
Path Algorithm :
Start with a all - zero
flow f. (5-6)=0 feeE)

.

Repeatedly build residual
graph t push flow along
an augmenting path .

When you can't
anymore,

flow is maximum .



Analysis with integer
capacities .
- initial flow is all

integers ( O)
-

if we assume each flow
8 is all integers,
residual capacities are
integers

-

so we always push a
positive integer amount of
flow

- so new flow is all integers



We push 21 unit of flow
each iteration

let 5-
*

be the Max value
flow

.

There are Elf% iterations
.

OCE) time per iteration

( build res . graph + search)

so
. . OCE 189) time

total



187 may not be

polynomial in input size
may be exponential in
A- fits given as input

could do X iterations

if you always push
on w→v or ✓→ u !



"

pseudo - polynomial time
"

-

polynomial in terms of
input nwmbers_ but not
the input size (# bits)

If I could be small

depending on application



Algorithm may never

terminate it given
real - valued capacities .

Could imply infinite loops
it from round ; not floating
point values !



Edmonds - Karp :
"

Fat pipes
"

choose the augmenting
path with largest bottleneck
capacity (maximize amount

pushed)

OIE logv) per iteration

Amount
you have left to

push decreases by a
%E1 fraction each

iteration
.



⇒ LEI - In 181 iterations

(with integer capacities)

011=-2 log Vlog 15-7)
time

"

weakly polynomial
"



Edmonds -Karp 2 :
choose augmenting path
with smallest # edges .

OfE) time per iteration
( use BFS in Gg )



Let fin the flow after
i iterations

.

Let 6=6 .

i tie

so G- Go .

Let level
,
(v) be unweighted

shortest path distance to v

in Gii



Lemma : level
,
G) Hovell G)
i - i

for all voi
.

Proof : level
a.
( s) :O -

- level
, ,
G)✓

Otherwise
,
let s→ "→ u→ ✓

be shortest path to v in Goi .

level;D = level.ata) +1 .

By induction on level
is

level ; (a) Z lovelier
,
Cu)



If w→v is in Gie
- is

level
up ,
(a) Helmet

,,
G)

Otherwise
, we must have

push along ✓ → a. So shortest

path to a used ✓ → u
,
so

lorelai , /a) + I
> level
, ,
(a) -1

= lovelier, Iv)
Either way,
level ;lv) -- level .nla) +1

7- lovely.int/zlpVelui-,lv)



Lemma : Any edge w→v
disappears from residual

graph E I V1 /2 times
.

Proof ! Suppose u→v in Gi
& 6
j+ ,
but not in

G
ien

' ' u
G
;

.

w→v in ith augmenting path
so level .ufv)= level:(a) +1

✓→ w in jth augmenting path
so lovely (a) = level;lv) +1



So
level
;
(a) = level

;
(Dt )

7- level.ua)H
= level
,
(a)+2

So distance from s to

a increased by 2 .

Max path length is Nl -1
So usu leaves c-

"%
times

.



Soe IEIIVI / 2 iterations
.

OIEZV) time
( any 20 real capacities)
"

strongly polynomial time
"

Dinitz 170s) :O (EU) with
almost same algorithm

:

Orlin 12012) :O (VE) time
A

cite this


