Reductions
Reducing a problem X to another problem Y means having an algorithm for X use an algorithm for Y
as a "black-box" or subroutine.

Uses what + how fast of Y only.
Like using a lemma in math

Let n be a positive integer A divisor of n is a pos. integer p sit. n / p is an integer.
n is primp if it has exactly two divisors, $1+n$.
n is composite if it has >2 divisors.
1 is neither

Tho: Every integer n greater than I has a prime divisor.
too proof techniques:
Direct prod: Let ${ }_{n}>1$
n has a prime divisor
Proof by contradiction:
Assume some int $n>$) has no prime divisor

We have a contradiction.

Proof by contradiction.
Assume there is some int n with no prime divisor.
n divides itself, $t n$ has no prime divisor, so n is not
Thus, exists at least one divisor d where $1<d \subset n$.
n has no prime divisors, so d is not prime
Thus d has a divisor d^{\prime} where $1<d^{\prime}<d$.

Because d/d'

$$
n / d^{\prime}=(n / d)^{\prime} \cdot\left(d / d^{\prime}\right)
$$

is an integer.
So d^{\prime} is a divisor of n.
So d^{\prime} is not prime.
So d^{\prime} has a divisor $d^{\prime \prime}$ where $1<d^{\prime \prime}<d$
So $d^{\prime \prime}$ is a divisor of $n \ldots$
ST OP

Another fry...
Proof by smallest counter example.
Assume some integer >1
has no primp divisor + let n be the smallest example.
n divides itself, t has no prime divisor, so n is not
Thus, exists at least one divisor d where $1 c_{d} c_{n}$. n was the smallest counterex. so d has a prime divisor p.
$n / p=(n / d) \cdot(d / p)$ is an integer.
So p is a prime divisor of n.
 contradiction
So there are no counter examples.

Direct proof: Let n bp an integer >1.
Assume for all integers k sit. $1<k<n, k$ has a prime divisor.
If n is prime, it is its own prime divisor.
Lather wise
$0 . W$. n is composite
So it has a divisor d sit. $1<d<n$
By assumption d has a
prime divisor p.

$$
(n / p)=(n / d) \cdot(d / p) \text { is an }
$$ integer, so p is a prime divisor of n.

Was a proof by induction.
Induction hypothesis (IH) assume theorem true for strictly smaller integers.

Inductive case! Using the I, H.
Base case: $N_{0} t$ using the IH. May be an infinite \neq of then!

Recipe

1) Write down the template.

2) Think big. Start with Inductive step.
3) Fill in the gaps (base cases)
4) Rewrite!

DO NOT:

1) Assume only on $n-1$. Do assume for all $k c_{n}$.
2) Do a proof for " $n+1$ ".

Recursion:
Write an algorithm to solve problem X that...

1) Reduce large inputs to smaller inputs of X,
2) Solve other instances directly (base cases)

Treat the recursive calls as black-box reductions.
The Recursion Fairy solves them

- move one disk at a time - never place a larger disk on a smaller one
- get all disks from left to right

Ob servations itbiggest disk cannot prevent others from moving

Algorithm.

1) get smaller $n-1$ disks of biggest one somehow.
2) move biggest disk to destination
3) pat $n-1$ smaller disks on it, somehow...

Hanoi (n, sure, $d s t, t_{m p}$):
move n disks from sere to dst, using tip as temp space (disks yo small to big (ton)
HANOI($n, s r c, d s t, t m p)$: if $n>0$

Hanoi $(n-1, s r c, t m p, d s t) \quad\langle\langle R e c u r s e!\rangle\rangle\rangle(n-1)$ move disk n from arc to $d s t \mid$
$\operatorname{HanOI}(n-1, t m p, d s t, s r c) \quad\langle\langle R e c u r s e!\rangle\rangle$

$$
T(n-1)
$$

$T(n)$: A moves for n disks $T(0)=0$

$$
T \underset{(n>0)}{T(n)}=2 T(n-1)+1
$$

$T h_{m}: T(n)=2^{n}-1$
Proof: Ass ump $T(k)=2^{k}-1$
for all $k=n$

$$
T d r \text { Is } n=0, T(n)^{n}=T(0)=0=2_{n}^{0}-1
$$

If $n>0$, $=2^{n}-1$

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2 \cdot\left(2^{n-1}-1\right)+1 \\
& =2^{n}-1
\end{aligned}
$$

