Reductions

Reducing a problem \(X \) to another problem \(Y \) means having an algorithm for \(X \) use an algorithm for \(Y \) as a "black-box" or subroutine.
Uses what + how fast of Y only.

Like using a lemma in math.
Let n be a positive integer. A divisor of n is a positive integer p s.t. n/p is an integer.

n is prime if it has exactly two divisors, 1 and n.

n is composite if it has >2 divisors.

1 is neither.
Thm: Every integer \(n \) greater than 1 has a prime divisor.

two proof techniques:

Direct proof: Let \(n > 1 \)

\[\ldots \]

\(n \) has a prime divisor

Proof by contradiction:
Assume some int \(n > 1 \) has no prime divisor

\[\ldots \]

We have a contradiction.
Proof by contradiction. Assume there is some integer \(n \) with no prime divisor. \(n \) divides itself, so \(n \) has no prime divisor, so \(n \) is not prime. Thus, exists at least one divisor \(d \) where \(1 < d < n \). \(n \) has no prime divisors, so \(d \) is not prime. Thus \(d \) has a divisor \(d' \) where \(1 < d' < d \).
Because \(d / d' \) is an integer,

\[n / d' = (n / d) \cdot (d / d') \]

is a divisor of \(n \).

So \(d' \) is a divisor of \(n \).

So \(d' \) is not prime.

So \(d' \) has a divisor \(d'' \) where \(1 < d'' < d' \).

So \(d'' \) is a divisor of \(n \)...

STOP
Another try...

Proof by \underline{smallest} counter example.

Assume some integer \(n > 1 \) has no prime divisor \(1 \) and let \(n \) be the smallest example. \(n \) divides itself, \(\therefore n \) has no prime divisor, so \(n \) is not prime.

Thus, exists at least one divisor \(d \) where \(1 < d < n \).

\(n \) was the smallest counterex, so \(d \) has a prime divisor \(p \).
$n/p = (n/d) . (d/p)$ is an integer.

So p is a prime divisor of n.

So there are no counterexamples.
Direct proof: Let \(n \) be an integer \(\geq 1 \).
Assume for all integers \(k \) s.t. \(1 \leq k < n \), \(k \) has a prime divisor.
If \(n \) is prime, it is its own prime divisor.

\(\forall \) otherwise \(\forall \) otherwise

So it has a divisor \(d \) s.t. \(1 < d < n \).

By assumption \(d \) has a
prime divisor \(p \).

\((n/p) = (n/d), (d/p) \) is an integer, so \(p \) is a prime divisor of \(n \).

Was a proof by induction.

Induction hypothesis (IH) assume theorem true for strictly smaller integers.
Inductive case: Using the IH.

Base case: Not using the IH. May be an infinite # of them!
Recipe:

1) Write down the template.

![Theorem]

Theorem: $P(n)$ for every positive integer n.

Proof by induction: Let n be an arbitrary positive integer. Assume that $P(k)$ is true for every positive integer $k < n$.

There are several cases to consider:

- Suppose n is ... *blah blah blah* ...

 Then $P(n)$ is true.

- Suppose n is ... *blah blah blah* ...

 The inductive hypothesis implies that ... *blah blah blah* ...

 Thus, $P(n)$ is true.

In each case, we conclude that $P(n)$ is true.

2) Think big. Start with Inductive step.

3) Fill in the gaps (base cases).

4) Rewrite!
DO NOT:
1) Assume only on n-1.
Do assume for all \(k < n \).
2) Do a proof for "n+1".
Recursion:

Write an algorithm to solve problem \(X \) that...

1) Reduce large inputs to smaller inputs of \(X \).

2) Solve other instances directly (base cases).

Treat the recursive calls as black-box reductions.

The Recursion Fairy solves them.
- move one disk at a time
- never place a larger disk on a smaller one
- get all disks from left to right
Observations: 1) biggest disk cannot prevent others from moving

Algorithm:
1) get smaller n-1 disks of biggest one, somehow...
2) move biggest disk to destination
3) put n-1 smaller disks on it, somehow...
Hanoi (n, src, dst, tmp):
move n disks from src to dst, using tmp as temp space (disks go small to big 1 to n)

\[
\text{Hanoi}(n, \text{src}, \text{dst}, \text{tmp}):
\begin{align*}
\text{if } n > 0 & \quad \text{Hanoi}(n-1, \text{src}, \text{tmp}, \text{dst}) \quad \text{\textit{\small (Recurse!)} } \\
\text{move disk } n \text{ from src to dst } & \quad \text{Hanoi}(n-1, \text{tmp}, \text{dst}, \text{src}) \quad \text{\textit{\small (Recurse!)} }
\end{align*}
\]
\(T(n) \): \# moves for \(n \) disks

\[T(0) = 0 \]

\[T(n) = 2T(n-1) + 1 \quad (n > 0) \]

Thm: \(T(n) = 2^n - 1 \)

Proof: Assume \(T(k) = 2^k - 1 \) for all \(k \leq n \).

Is \(n = 0 \), \(T(n) = T(0) = 0 = 2^0 - 1 \)

Is \(n > 0 \),

\[T(n) = 2T(n-1) + 1 \]

\[= 2 \cdot (2^{n-1} - 1) + 1 \]

\[= 2^n - 1 \] \(\checkmark \)