Edit distance:
-minimum \# of
insertions
deletions σ
sabstit ations
fo turn rue string
into another.

$$
\begin{aligned}
& \text { FOOD } \rightarrow \text { MOOD } \rightarrow \text { MOND } \\
& \rightarrow \text { MONED } \rightarrow \text { MONEY } \\
& \Rightarrow \text { dit distanco } \leqslant 4
\end{aligned}
$$

Chevenschtein ov Olam distance)

Given two strings

$$
A[1, m]+B[1, n]
$$

Goal: compute their edit distance

Want to figure out what happened to each character of $A /$ come where did B's chars from

free

For each choice of the kith edit, recursively try to minimize of edits between the remaining prefixes.

$$
E_{d i t}\left(i_{j}\right): E d i t
$$ distance between $A[1, i j]+B[1 . . j]$.

Ultimate goal is to compute...
Edit distance of $A[1 . . m]+B[1, n]$ is... Edit (m, n)

Specification
For positive it; the "last edit" can be...
Insertion:

Deletion:

$$
E_{d_{i}}+(i j j)=1+E_{l_{i}}\left(_{i-1}\right.
$$

Substitution (?):

$$
\left.\left[A\left[_{i}\right] \nexists B[j]\right]=1 \text { if } A C_{i}\right] \neq B[j]
$$

$$
\left.E d_{i}+(i, j)=[A C i] \neq B(j]\right]^{E l i d t i-1)}
$$

$$
\begin{aligned}
& E \operatorname{dit}(0, j)=j \\
& E \operatorname{dit}(i, 0)=i \\
& (\Rightarrow E \operatorname{mit}(0,0)=0) \\
& E \operatorname{dit}(i, j)=
\end{aligned}
$$

Subproblems:

$$
\begin{aligned}
& 0 \leq \dot{\omega} \leq m \\
& 0 \leq j \leq n
\end{aligned}
$$

Data structare:

$$
E_{d i t}[0, \ldots, 0 \ldots n]
$$

Depen dencies:

Evaluation order: "row major order"

$$
\begin{aligned}
& \text { Space: } O(m n) \\
& \text { Time: } O(1) \cdot O(m n) \\
&=O(m n)
\end{aligned}
$$

```
EditDistance(A[1..m], \(B[1 . . n])\) :
    for \(j \leftarrow 0\) to \(n\)
        \(\operatorname{Edit}[0, j] \leftarrow j\)
    for \(i \leftarrow 1\) to \(m\)
        \(\operatorname{Edit}[i, 0] \leftarrow i\)
        for \(j \leftarrow 1\) to \(n\)
            ins \(\leftarrow E \operatorname{dit}[i, j-1]+1\)
            \(\operatorname{del} \leftarrow E \operatorname{dit}[i-1, j]+1\)
            if \(A[i]=B[j]\)
                \(r e p \leftarrow E \operatorname{dit}[i-1, j-1]\)
            else
                \(r e p \leftarrow \operatorname{Edit}[i-1, j-1]+1\)
                \(E \operatorname{dit}[i, j] \leftarrow \min \{i n s\), del, rep \(\}\)
    return \(\operatorname{Edit}[m, n]\)
```

 \(\left[W_{\text {agreed }}\right.\) Fischer ' 74\(]\)
 (Midterm | in two
woks)

\rightarrow answer from insert \searrow from \downarrow from delete sub.

Follow arrows badewards From (m, n) to get best edit sequence. o $(m+n)$ addition time.

