CS 6301.002.20S Lecture 23—April 14,2020

Main topics are

Well Separated Pair Decomposition (WSPD)

On Thursday, we discussed approximation algorithms for the k-center clustering problem.
One motivation for those algorithms is that we cannot solve k-center clustering exactly in
polynomial time if k is part of the input.

However, we also saw an approximation scheme for when k is not part of the input but we
want a near-linear time algorithm for the problem.

Today, we're going to discuss another tool where near-linear time approximation
algorithms are just one application.

To motivate it, consider the following setting.

In the n-body problem, you're given a large collection of bodies, say in space, and you
want to simulate gravitational and other interactions between them.

Well, just knowing how each body’s mass is affecting the other bodies appears to require
Omega(n”2) distance calculations. If you're trying to do a simulation, performing the
calculations can be very expensive.

But consider the following situation: you have two sets of bodies, each in a different
galaxy. In each galaxy, the bodies are relatively close together, but the two galaxies are
very far apart as galaxies tend to be. If we want to know how bodies in one galaxy are
affecting the other, we may as well treat each galaxy as one big body.

Let's make this more precise for today's lecture. We're given a set of n points P in RAd.

Let s > 0 be a value we call the separation factor.

We say two disjoint subsets A and B of P are s-well separated if there exists an r such that A
and B can be enclosed in Euclidean balls of radius r and the closest distance between the

ballsis = sr.

Note by this definition, for any a # b in P, {a} and {b} are s-well separated for any s > 0.
So here's the surprising thing. There are (n choose 2) different pairs of points in P.
However, it is possible to find a small number of pairs of subsets (think little pairs of
galaxies) from P that such that pairs of subsets are all s-well separated and every pair is

represented in some pair of subsets.
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Let's break down that claim piece-by-piece.
Given disjoint sets A and B, let A otimes B be the set of distinct unordered pairs from A
and B, so Aotimes B ={{a, b}|ain A, binB,a = b}
An s-well separated pair decomposition (s-WSPD) is a collection of pairs of subsets of P
denoted ({A_1,B_1},{A_2,B_2}, ..., {A_m, B_m}} such that

A_i,B_isubsetPforall1< i< m

A_iintersect B_i = emptysetforall 1< i< m

union_{i=1}m A_i otimes B_i = P otimes P

A_iand B_i are s-well separated forall 1< i< m
So, we have pairs of disjoint subsets, and every pair of points from P appears in at least
one pair of subsets. Also, each pair of subsets is s-well separated.
In other words, the distance between any pair of points can be approximated by the
distance between the subsets containing that pair.
We can build an s-WSPD by building O(n2) pairs of singletons, one per pair of points
from P.
But when s and the dimension d are constants, you can actually get away with only O(n)

pairs. The constant in that big-oh is proportional to s”d.

Quadtrees

In order to find those O(n) pairs, we'll have to work with a new kind of geometric data
structure called a quadtree (called an octree in 3D).

The quadtree is a hierarchical decomposition of space. Each node is associated with a
hypercube region of space called a cell.

For simplicity, let's scale everything so P lies in the unit hypercube [0, 1]*d. This hypercube
corresponds to the root of the quadtree.

Now we iteratively add nodes to the tree as follows.

Let's say we haven't processed node u or its cell.

If the cell contains one or fewer points, we're done processing u.

Otherwise, we subdivide the cell into 2°d hypercubes of side length half that of the

original cell and make one node per new hypercube as a child of u.
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Notice how within each level of the tree, the cells are all the same size and are pairwise
disjoint.

Also, each cell has a side length of exactly 1/ 2/i for non-negative integer i.

This is not the same as a kd-tree! First, each cell in the quadtree has 2/d children instead
of 2. Also, space is partitioned evenly, not the number of points.

In practice, what | just described tends to yield relatively small trees, but in the worst case it
may actually have and arbitrarily large number of nodes!

The problem is when there is a cluster of points very close together relative to their
surroundings, the quadtree may contain an arbitrarily long trivial path leading to the

cluster in which only one child of each node on the path has a cell containing any points.
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To deal with this issue, we have to use path compression where we replace the whole trivial
path with a single edge.
Compressing every trivial path results in the compressed quadtree.
In a compressed quadtree, you never have both a parent and its child node failing to
separte two points. There are O(n) nodes in the tree.
| won't give the algorithm here, but we can construct the compressed quadtree for any set
Pin O(n log n) time.
Some final bits of notation before we build a WSPD.

« Foranode u, let P_u be the set of points in its cell.

+ Letlevel(u) = -log_2 x where x is the side length of the cell. In the uncompressed

quadtree, the level is the distance from the root.

« However, if u contains one point, we'll say level(u) = infinity.

Constructing the WSPD

So, we're given n points P in RAd and s > 0. We'll build an s-WSPD of size O(s~d n) in O(n
log n +s”d n) time. I'm assuming d is a constant.

First, build a compressed quadtree in O(n log n) time.

Each pair {A_i, B_i} will equal {P_u, P_v} for a pair of nodes u and v in the quadtree, so we'll

concentrate on outputting pairs of nodes.



The algorithm recursively takes pairs of nodes u and v and tries to find well separated pairs
containing every pair from P_u oplus P_v.

If either cell is empty, we ignore the pair.

Otherwise, assume level(u) < level(v).

Take the two smallest Euclidean balls of equal radius surrounding u and v's cells. If s-well
separated then output {u, v}. Otherwise, recursively apply this procedure for each of the
27d pairs {u_i, v} where u_i is a child of u.
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Here's some pseudocode. ws-pair(u, v, s) makes well separated pairs from P_u and P_v
with separation factor s. The initial call is ws-pair(u_0, u_0, s) where u_0 is the root of the
quadtree.
ws-pairs(u, v, s):
if P_u or P_v is empty, return emptyset
if uand v are leaves and u = v, return emptyset
if uand v's cells are s-well separated, return {{u, v}}
else
if level(u) > level(v), swap u and v
letu_1, ..., u_{2~d} denote children of u
return union_{i=1}M2/d} ws-pairs(u_i, v, s)
You can verify this algorithm is correct by induction.
In the first three cases, it verifies that P_u oplus P_v consists of zero or one s-well
separated pairs.
Otherwise, it inductively finds well separated pairs for every P_{u_i} oplus P_v, and
together these cover all pairs of P_u oplus P_v.
Notice how each ordered pair from P oplus P appears exactly once. You can modify the

algorithm slightly to detect and remove redundant pairs (P_u, P_v) and (P_v, P_u).

Analysis

To make the analysis easier, let's assume today that the quadtree is not compressed but
still has size O(n). Then children nodes have cells with exactly half the side length of their
parent’s cell.

This assumption also implies that when calling ws-pairs(u, v, s), the sizes for u and v differ

by a factor of at most 2. Remember, we always split the larger cell.



We'll also assume s = 1, since that's the interesting case anyway.

We will count the number of calls to ws-pairs since it bounds both the running time and
the number of pairs in the output.

Say a call is terminal if it doesn't reach the final else clause.

Since the quadtree and call tree have arity 2/d, we'll just count the non-terminal calls and
multiply by 2/d (a constant) for our final count.

We'll use a charging argument. Every non-terminal call reaches that final else clause where
it splits u’s cell and does not split v's cell. We will charge each non-terminal call to node v
and show each node is charged at most O(s”Ad) times. There are O(n) nodes in the
quadtree so that's O(sd n) calls overall.

A node v is charged to only when a call is non-terminal, meaning some u is not s-well
separated from v.

Let x be the side length of v's cell. The side length of u’s cell is at most 2x. The smallest
radius needed to enclose either cell in a ball is x sqrt(d). And since the balls are not s-well
separated, their distance from each other is at most s x sqrt(d).

In particular, the centers of the balls are at most R_v = x sqrt(d) + x sqrt(d) + s x sqrt(d) <
3sx sqrt(d) apart.

OK, so all u have cells touching a ball of radius R_v centered at the center of v's cell. The
way the procedure works, no single ws-pair uses the same u and v twice. Each u in a non-
terminal call has side length x or 2x. The cells are pairwise disjoint since each {p, q}
appears exactly once.

But you can prove there are at most O((R_v / x)d) = O((3sx sqrt(d) / x)"d) = O(s"d)
disjoint cells of side length x touching that ball. The same asymptotic bound holds for

disjoint cells of side length 2x.
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So, we charge to v O(sd) times as promised.

Meaning we output O(s”d n) pairs.

And the total running time is O(n log n + s~d n).

Thursday, we'll discuss applications of WSPDs for approximation algorithms and related

concepts.



