CS 6301.002.20S Lecture 24-April 16, 2020

Main topics are \#well_separated_pair_decompositions

Well Separated Pair Decomposition (WSPD)

- Today, we're going to discuss some applications of well separated pair decompositions (WSPDs)
- Let's start with a review. Given a separation parameter $s>0$, point sets A and B are s-well separated if A and B can be enclosed in sphere of radius r that are distance at least sr apart.
- An s-well separated pair decomposition (s-WSPD) of point set P is a collection of pairs of subsets $\left\{\left\{A _1, B _1\right\},\left\{A _2, B _2\right\}, \ldots,\left\{A _m, B _m\right\}\right\}$ such that

1. $A_{-} i, B$ _ subset P for all $1 \leq i \leq m$
2. $A_{-} i$ intersect $B_{-} i=$ emptyset for all $1 \leq i \leq m$
3. union_ $\{i=1\}^{\wedge} m A_{-} i$ otimes $B _i=P$ otimes P
4. $A_{-} i$ and $B_{-} i$ are s-well separated for all $1 \leq i \leq m$
where A otimes B is the set of unordered pairs from A and B.

- Last time, we saw how (for any $s \geq 2$), there exists an s-WSPD of size $O\left(s^{\wedge} d n\right)$ which can be constructed in $O\left(n \log n+s^{\wedge} d n\right)$ time.
- The WSPD can be represented as a set of unordered pairs of nodes from a compressed quadtree of P.
- For any node u, we'll let $P_{-} u$ be the points in u's cell and let rep(u) denote an arbitrary representative point in from $P_{-} u$. We can compute these in representatives in $O(n)$ time given the compressed quadtree.
- Lemma: (WSPD Utility Lemma) If the pair $\left\{P_{-} u, P_{-} v\right\}$ is s-well separated and x, x^{\prime} in $P_{-} u$ and y, y^{\prime} in $P_{-} v$ then:
i. $\left\|x x^{\prime}\right\| \leq 2 / s$ * $\|x y\|$
ii. $\left\|x^{\prime} y^{\prime}\right\| \leq(1+4 / s)\|x y\|$
- In other words, points within a subset are much closer than points between subsets.
- Proof:
- We can enclose $P_{~} u$ and $P ~ _~ v i n ~ b a l l s ~ o f ~ r a d i u s ~ r ~ t h a t ~ a r e ~ s r ~ d i s t a n c e ~ a p a r t . ~$
- Therefore, $\left\|x x^{\prime}\right\| \leq 2 r=(2 r / s r) * s r \leq(2 r / s r) *\|x y\|=2 / s *\|x y\|$.
- And between triangle inequality and claim i., $\left\|x^{\prime} y^{\prime}\right\| \leq\left\|x^{\prime} x\right\|+\|x y\|+\left\|y y^{\prime}\right\| \leq 2 / s^{*} \| x$ $y\|+\| x y\|+2 / s *\| x y\|=(1+4 / s)\| x y \|$.
- Now we can look at some applications.

Approximating the Diameter

- The diameter of a point set is the maximum distance between any pair of points in the set.
- We could compute it exactly in $O\left(n^{\wedge} 2\right)$ time by trying all pairs of points, and there's an $O(n$ $\log n$) time algorithm for points in the plane, but let's find a fast ($1+\mathrm{eps}$)-approximation algorithm for point sets in any constant dimensional Euclidean space.
- Given eps, let $s=4 / \mathrm{eps}$ and construct an s-WSPD.
- Let p_u = rep(u) and p_v = rep(v) for any pair of quadtree nodes u and v.
- For every well-separated pair $\left\{P _u, P _v\right\}$, compute $\left\|p _u p _v\right\|$ and output the largest distance computed.
- There are $O\left(s^{\wedge} d n\right)$ distances computed, so the whole thing takes $O\left(n \log n+s^{\wedge} d n\right)=O(n$ $\log n+n / e p s \wedge d)$, which is $O(n \log n)$ if eps is a constant.
- To prove correctness, let x and y be the points realizing the diameter and let \{P_u, P_v\} be the well-separated pair containing x and y respectively.
- By the Utility Lemma, $\|x y\| \leq(1+4 / s)\left\|p _u p _v\right\|=(1+e p s)\left\|p _u p _v\right\|$.
- $\{x, y\}$ is the diametrical pair, so $\|x y\| /(1+e p s) \leq\left\|p _u p _v\right\| \leq\|x y\|$. We have a (1 + eps)approximation.

Closest Pair

- We can try the same algorithm for solving the closest pair problem: for every wellseparated pair $\left\{P _u, P _v\right\}$, compute $\| p _u$ p_v\| and output the smallest distance computed.
- The surprising thing is that this algorithm actually find the exact closest pair as long as s is large enough.
- Say $\{x, y\}$ is the closest pair and that $s>2$. Again let $\left\{P _u, P _v\right\}$ be the well-separated pair containing x and y respectively.
- P_u and P_v lie in balls of radius r at distance at least sr $>2 r$ apart, so $\left\|p _u x\right\| \leq 2 r<s r \leq \| x$ yll.
- If p_u $\neq x$, then this contradicts x and y being the closest pair. $p _v=y$ for the same reason. So the representatives we tested must actually be the closest pair!
- We can set s arbitrarily close to 2 so the running time of the algorithm is $O\left(n \log n+2^{\wedge} d\right.$ $n)=O(n \log n)$, assuming d is a constant.

Spanner Graphs

- Recall we can express all pairwise distances using between points in P using the Euclidean graph, the complete graph with edge weights equal to the distance between its endpoints.
- Unfortunately, it is a dense graph with Theta($n \wedge 2$) edges. It would be nice to find a sparse graph with far fewer edges.
- Given a stretch factor $t \geq 1$, a subgraph G of the Euclidean graph is called a t-spanner if for any pair of points x, y in P we have $\|x y\| \leq$ delta_ $G(x, y) \leq t * \| x y$ where \backslash delta_ $G(x, y)$ is the shortest path distance between x and y in G .
- I claimed in an earlier lecture that the Delaunay triangulation is a t-spanner for some $1.5846 \leq \mathrm{t} \leq 2.418$. This observation does not generalize to higher dimensions, and maybe we want better approximations of distance anyway.
- So here's what we'll do. Pick some $s \geq 2$. We'll make a more concrete choice later.
- Compute an s-WSPD, and for each well-separated pair \{P_u, P_v\}, with representatives p_u $=$ rep(u) and p_v = rep(v), add edge p_u p_v to the graph.
- G has $O\left(s^{\wedge} d n\right)$ edges and takes $O\left(n \log n+s^{\wedge} d\right)$ time to construct.

Spanner

- But is it a spanner? We need to prove for any x, y in $P,\|x y\| \leq d e l t a _G(x, y) \leq t *\|x y\|$.
- The first inequality is true, because G is a subgraph of the Euclidean graph.
- We'll prove the second inequality by induction on the Euclidean distance between two points.
- First, if x and y are joined by an edge in G, then \delta_ $G(x, y)=\|x y\| \leq t *\|x y\|$.
- Now suppose otherwise. Again let $\left\{P _u, P _v\right\}$ be the well-separated pair containing x and y respectively.
- By the triangle inequality,

$$
\begin{aligned}
\delta_{G}(x, y) & \leq \delta_{G}\left(x, p_{u}\right)+\delta_{G}\left(p_{u}, p_{v}\right)+\delta_{G}\left(p_{v}, y\right) \\
& \leq \delta_{G}\left(x, p_{u}\right)+\left\|p_{u} p_{v}\right\|+\delta_{G}\left(p_{v}, y\right) .
\end{aligned}
$$

- By the Utility Lemma, $\max \left(\left\|x p_{-} u\right\|,\left\|p _v y\right\|\right) \leq 2 / s *\|x y\| \leq\|x y\|$, and $\left\|p _u p _v\right\| \leq(1+4 / s)$ $\|x y\|$.
- We can apply induction to say

$$
\delta_{G}(x, y) \leq t\left(2 \cdot \frac{2}{s} \cdot\|x y\|\right)+\left(1+\frac{4}{s}\right)\|x y\|=\left(1+\frac{4(t+1)}{s}\right)\|x y\|
$$

- So now to make the inequality work out, we just need $1+4(\mathrm{t}+1) / \mathrm{s} \leq \mathrm{t}$. So, set $\mathrm{s}:=4(\mathrm{t}+$ 1) / $(t-1)$.
- Now

$$
\delta_{G}(x, y) \leq\left(1+\frac{4(t+1)}{4(t+1) /(t-1)}\right)\|x y\|=(1+(t-1))\|x y\|=t \cdot\|x y\|
$$

- Spanners are most interesting for small stretch factors, so let's assume $t=1+e p s$ for some $0<\mathrm{eps} \leq 1$.
- The size of the spanner is

$$
O\left(s^{d} n\right)=O\left(\left(4 \frac{(1+\varepsilon)+1}{(1+\varepsilon)-1}\right)^{d} n\right) \leq O\left(\left(\frac{12}{\varepsilon}\right)^{d} n\right)=O\left(\frac{n}{\varepsilon^{d}}\right)
$$

- And it takes $O(n \log n+n / e p s \wedge d)$ time to build the thing.

Euclidean MST

- Let's finish up with a fast approximation algorithm for Euclidean Minimum Spanning Tree (MST).
- Computing the MST directly from the Euclidean graph takes Theta($\mathrm{n}^{\wedge} 2$) time.
- Earlier, we discussed how the Delaunay triangulation actually contains the MST, giving us an $O(n \log n)$ time exact algorithm for the plane. What we'll do now works as an approximation for any constant dimension.
- First, we construct a $(1+e p s)$-spanner $G=(V, E)$ using the algorithm we just discussed.
- Then, we compute the MST of G in $O(V \log V+E)$ time using a variant of Prim's algorithm with Fibonacci heaps. The total running time is $O(n \log n+n / e p s \wedge d)$.
- To see why it works, let $w(x, y)=\|x y\|$. For any subgraph H of the Euclidean graph, let $w(H)$ be the total weight of its edges. Finally, let pi_G(x,y) denote the shortest path from x to y in G so that $w\left(p i _G(x, y)\right)=$ delta_ $G(x, y) \leq(1+e p s)\|x y\|$.
- Let T be the minimum spanning tree. Form G^{\prime} subset G by taking the union of edges of pi_G(x,y) for all $x y$ in T. In other words, each edge of T is replaced by its shortest path in the spanner.
- G' must be connected, but it may not be a tree.
- We have w(G')

$$
\begin{aligned}
\cdot & =\text { sum_\{xy in } T\} \text { w(pi_G }(x, y)) \\
\cdot & \leq \text { sum_\{xy in } T\}(1+\text { eps })\|x y\| \\
\cdot & =(1+\text { eps }) \text { sum_\{xy in } T\}\|x y\| \\
\cdot & =(1+\text { eps }) w(T)
\end{aligned}
$$

- On the other hand, we have less options when building the MST of G^{\prime} than the MST of G, so the MST of G must weigh less than the MST of G^{\prime}.
- We conclude $w(M S T(G)) \leq w\left(M S T\left(G^{\prime}\right)\right) \leq w\left(G^{\prime}\right) \leq(1+e p s) w(T)$.

