
CS 6301.002.20S Lecture 28—April 30, 2020

Main topics are #locality_senstive_hashing .

Approximate Nearest-Neighbor

 We’ll continue our discussion of higher dimensional inputs and arbitrary metrics by
focusing on a specific problem defined for any metric.
 In the approximate nearest-neighbor problem, you’re given a metric (X, d) and a subset S
of X with n elements. You want to preprocess S to answer approximate nearest-neighbor
queries denoted as NN(q, r, c).

 If there is some x in S such that d(q, x) ≤ r, then report some y in S such that d(q, y) ≤ cr.
 If there is no x in S such that d(q, x) ≤ cr, then report failure.
 Otherwise, report some x in S such that d(q, x) ≤ cr or fail. Either is fine.

 So this is similar to our approximate decision procedure for set cover and hitting set.
 When c = 1, then it’s just a query for whether the nearest neighbor to q is within distance r.
Like set cover and hitting set, we can binary search for an approximately smallest value to
find an approximately nearest neighbor to any query point q.
 When r is large enough, then NN(q, r, c) is good for distinguishing between q being really
far from the data set and q being close enough. It turns out this problem is much easier to
solve than finding q’s nearest neighbor exactly.
 Now, if X = R^d for some small constant d, you can answer NN(q, r, (1 + eps)) for any
constant eps > 0 in O(log n) time using a somewhat involved data structure called a BBD-
tree that takes only O(n log n) space.
 But like many things we saw this semester, the hidden constants increase exponentially in
d.

Locality Sensitive Hashing

 Today, we’ll look at a different approach called locality sensitive hashing that works fine in
high dimensions, although the guarantees aren’t as good.
 The main idea is to randomly choose one function from a large collection of hash functions
specific to the metric you care about. If two elements are close to one another, then
hopefully you pick a function that hashes them to the same value.
 We call a probability distribution H over different hash functions a hash family.
 Formally, given a parameter c > 1, probabilities p_1 > p_2, and a distance r ≥ 0, a hash
family H is (r, cr, p_1, p_2)-Locality Sensitive (LSH) if for all q in X, x, y in S

 If d(x, q) ≤ r, then Pr[h(x) = h(q)] ≥ p_1, and
 if d(y, q) ≥ cr, then Pr[h(y) = h(q)] ≤ p_2.

 So we hope that p_2 is much smaller than p_1.
 This is pretty different from cryptographic hashing where you’d hope two items have
completely different hash values if they differ at all, but naming is one of the hardest
problems in computer science.

Hamming Distance

 Given two m-dimensional bit vectors x and y, their Hamming distance d(x, y) is the number
of positions at which they disagree.
 So 0010 and 0100 have Hamming distance 2.
 Let H be the hash family where each h in H is assigned a different coordinate so that h(x) is
x’s value at that coordinate. The hash function is chosen uniformly at random from the hash
family.
 We get Pr[h(x) = h(y)] = 1 - d(x, y) / m, because there are d(x, y) choices out of m for the
coordinate that give us a different value for h(x) and h(y).
 As we would hope, x and y are more likely to hash to the same value if their Hamming
distance is small.
 So in this case, H is (r, cr, p_1, p_2)-LSH for

 p_1 = 1 - r / m and
 p_2 = 1 - cr / m.

Jaccard Distance

 Let U be some universe of elements. Given two subsets S_1 and S_2 of U, the Jaccard
similarity coefficient J(S_1, S_2) = |S_1 intersect S_2| / |S_1 union S_2|. This is not a metric.
 But the Jaccard distance d(S_1, S_2) = 1 - J(S_1, S_2) is a metric.
 To do approximate nearest neighbors for the Jaccard distance, let each h in H be a
different permutation pi of U. h(S) = the earliest element of S according to pi. Again, we
choose an h uniformly at random.
 So, Pr[h(S_1) = h(S_2)] = J(S_1, S_2) = 1 - d(S_1, S_2).
 This H is also LSH.

 p_1 = 1 - r and
 p_2 = 1 - cr.

Angular Distance

 Given two vectors x and y in some R^m, then angle between them is d(x, y) = cos^{-1} ((x
dot y) / (||x|| ||y||)).
 Now, for each h in H choose a different unit vector u. h(x) = sign(x dot u).
 In other words, h(x) = 1 if x makes an acute angle with u and h(x) = -1 if the angle is obtuse.

 Pr[h(x) = h(y)] = 1 - d(x, y) / pi.
 Again, H is LSH. For any r in [0, pi] and c > 1 with cr ≤ pi,

 p_1 = 1 - r / pi and
 p_2 = 1 - cr / pi.

The LSH Algorithm

 So we have all these nice LSH hash families. How do we use them?
 Say H is (r, c, p_1, p_2)-LSH. We want to build a data structure for NN(q, r, c).
 Fix two parameters k and ell. We’ll figure out what they should be later.
 For each i, j with 1 ≤ i ≤ ell and 1 ≤ j ≤ k, pull h_{i j} independently from hash family
(distribution) H. These will stay fixed for the life of our data structure.
 Now, for each x in our set of n elements S, and for each 1 ≤ i ≤ ell, store x in bucket g_i(x)
= <h_{i 1}(x), h_{i 2}(x), …, h_{i k}(x)>. So that’s ell buckets for x, each bucket indexed by a k-
dimensional hash function.
 The data structure will store just the buckets that actually contain some element x along
with their elements.
 Now, for a query q, we compute g_1(q), g_2(q), …, g_ell(q). We look at each of these
buckets in order, and check the elements of S within each bucket. When checking an
element x, we return it if d(q, x) ≤ cr. We return failure if we run out of buckets or check
more than 4 ell elements.
 So then the analysis depends upon the following: Suppose there is a point x^* in S such
that d(q, x^*) ≤ r. We’ll choose ell and k so that with constant probability:

1. For some i, g_i(x^*) = g_i(q) and
2. there are at most 4 ell elements in S with d(x, q) > cr such that for some i, g_i(x) =

g_i(q).
 The algorithm will never check more than 4 ell elements. With constant probability, there
will be something good to check, that element x^*. And the algorithm won’t give up too
early doing bad checks for 4 ell elements that are inappropriate to return.
 At this point we need to pick values for ell and k that make the data structure useful.
 The running time of a query is O(ell k). You need to find those ell buckets, each computed
by evaluating k hash functions, and then check O(ell) distances directly.
 Space usage is O(ell n), though, since you store each point of S in ell different buckets.
 So, we want to pick k and ell as small as possible so that queries have a constant
probability of success.
 Let rho = ln(p_1) / ln(p_2) = log_{p_2} p_1. In each of the three cases, rho ≅ 1/c.

 For Hamming distance, rho = ln(p_1) / ln(p_2) ≅ (r / m) / (cr / m) = 1 / c. The other
cases are almost identical.

 Theorem: Let ell = n^rho and k = log n / log (1 / p_2) = - log_{p_2} n. Properties 1 and 2

both hold with constant probability.
 Proof for 2.

 Consider x’ in S where d(x’, q) > cr. The LSH property implies Pr[g_i(x’) = g_i(q)] ≤
p_2^k for all i, because we’d need to agree with all k independently chosen hash
functions.
 p_2^k

 = p_2^(- log_{p_2} n)
 = 1/n

 So for a fixed i, the expected number of x’ that map to the same bucket as q is 1/n * n
= 1.
 And therefore, the expected total number of false positives is ell * 1 = ell.
 The well-known Markov’s inequality states a non-negative random variable exceeds its
expectation by a factor a with probability at most 1 / a.
 Therefore, the probability that there are more than 4 ell false positives is at most ell /
(4 ell) = 1/4.

 Proof for 1.
 Pr[g_i(x^*) ≠ g_i(q)]

 ≤ 1 - p_1^k
 = 1 - p_1^(-log_{p_2} n)
 = 1 - n^(- log_{p_2} p_1)
 = 1 - 1 / n^rho

 But since we chose ell = n^rho, Pr[g_i(x^*) ≠ g_i(q) for all i]
 ≤ (1 - 1 / n^rho)^{n^rho}
 ≤ 1/ e.

 The probability that both hold is at least 1 - 1/e - 1/4 ≥ 1/3.
 With those settings of k and ell, you get results like the following: If c = 2, then you get to
do queries that succeed with constant probability in about ~O(sqrt(n)) time each (ignoring
logs) while using only O(n^1.5) space for the data structure. That’s less than linear time
and less than quadratic space.
 If you want to boost the probability of success, just build several data structures with their
own independently chosen sets of hash functions. O(log n) of them is enough to get a
high probability of success for any query.

