
CS 6301.008.18S Lecture—February 8, 2017

Main topics are #trapezoidal_maps , and #planar_point_location .

Planar Point Location

 Tuesday, we started to discuss the problem of planar point location.
 We’re given segments S = {s_1, …, s_n}.
 Assuming those segments form a planar subdivision, it’s natural to ask, given a query point 
q, which face it lies in.
 But instead we’ll ask more general vertical ray-shooting queries. Given q, which line 
segment s_i lies immediately below it?

 For point location, we’ll build a directed acyclic graph. Meaning a directed graph with no 
directed cycles.
 There are two types of internal nodes:

 x-nodes contain an endpoint p from one of the segments. It has two outgoing edges/
children corresponding to points lying left or right of the vertical line through p.
 y-nodes contain a pointer to an input segment and it’s left and right outgoing edges/
children correspond to points above or below the segment’s line, respectively.

 The leaves of the data structure correspond to trapezoids in a trapezoidal map.

 Recall, for a trapezoidal map we sent vertical extensions from each segment endpoint, 
partitioning the plane into a collection of internally disjoint trapezoids.
 To perform a query, you simply start at the unique source node / root and follow the 
correct child from each node until you hit a sink / leaf.



 Query time is proportional to the distance you must travel to reach a leaf.
 So how do we build a DAG that allows for small query times?

Construction

 To build the trapezoidal map, we used randomized incremental construction.
 We added segments one by one in random order. Let S_i be the first i segments and T_i 
be their map.
 To add segment s to S_{i-1}, we had to do a point location query to find s’s left endpoint. 
Then we added extensions for its endpoints and trimmed back the walls from trapezoids 
of T_{i-1}, creating a bunch of new trapezoids.
 We said these new trapezoids depend upon s.
 So here’s the trick: since we need to do point location to insert each segment, we should 
incrementally build and query the point location data structure as well!
 Adding the segment s destroys some trapezoids and adds some new ones. What we’ll do 
is replace the destroyed trapezoids’ leaves with a handful of nodes leading to each newly 
created trapezoid.
 There’s a couple cases to consider when removing an old trapezoid depending on how 
many endpoints of new segment s lie inside it:

 (a) one endpoint:
 trapezoid A is replaced by three trapezoids X, Y, and Z surrounding endpoint p in 
clockwise order.
 Create an x-node for p with left child X
 Right child is a y-node for s with children Y and Z.

 (b) two endpoints:
 trapezoid A is replaced by four trapezoids U on left, X on right, Y above, Z below.
 Create x nodes for p and q. U lies to left of both and X lies to right of both.
 Create a y node for s between them, Y and Z are its children.

 (c) no endpoints:
 trapezoid A is replaced by two trapezoids, X above and Y below



 Create y-node for s with children X and Y.
 Now, you might notice that we create leaves for the same new trapezoid multiple 
times. To keep the space usage low, we’ll create just one sink/leaf for that trapezoid 
that gets shared between all the structures that want to point to it. We still create 
multiple y-nodes for s, though, since the path to those nodes provides valuable 
information.
 Here’s an example of what happens when you add a whole segment:

Analysis

 The construction of the trapezoidal map and point location data structure are randomized. 
In the latter case, the structure itself is random, meaning both its size and the time for 
queries are random.
 So we’ll try to figure out their expected values.
 For size, notice that we add a constant number of nodes every time we destroy or create a 
trapezoid. On Tuesday, I showed you there are O(n) trapezoids created in expectation 
across the whole algorithm, so the expected size is O(n).
 Query time is more complicated. Say we’re given some arbitrary query point q. This point 
is not random and may be chosen to make this analysis seem as bad as possible. I claim 
the expected search depth in the DAG for q is O(log n) where the expectation is taken 
over all random orderings of the line segments.
 Note this analysis just works for any one point q picked independently of the random 



choices. As far as this analysis is concerned, there may be some point q’ with bad query 
time. But to find q’, you’d have to know the random choices. I’ll come back to this point 
later.
 OK, so suppose we search for q.  Remember how the structure is built top down as we add 
new segments. You can imagine the location of q moving from top to bottom as well.
 Before adding any segments, q lies above the root. As we add each new segment, q 
moves down at most three levels to reach its new leaf trapezoid.
 Consider the example above. Say q lies somewhere in final trapezoid I. q starts somewhere 
in the box. Oh, but segment s_1 was added so it moves three steps down to a leaf where 
that p_2 is. Oh but segment s_2 was added so it moves two steps down to the leaf for D. 
Oh, but s_3 was added so it moves another step to the leaf for I.
 So, the search depth for q is proportional to the number of times q’s trapezoid changes.
 Let X_i be a random variable equal to 1 if q changes its trapezoid after the ith insertion and 
0 otherwise.
 Let D(q) denote the depth of q in the final search structure.
 D(q) ≤ 3 sum_{i=1}^n X_i, so E[D(q)] ≤ 3 sum_{i=1}^n E[X_i].
 We’re again summing over the probabilities that each variable is 1.
 But how do we analyze that? Well, we already did in a way on Tuesday.
 Fix some S_i. Consider the trapezoid Delta_i in T_i containing q. This trapezoid depended 
on at most four segments, each of which has a 1/i probability of being the last segment 
added from S_i. So, the probability we created Delta_i with the last insertion is ≤ 4/i.
 E[D(q)] ≤ 3 sum_{i=1}^n E[X_i] ≤ 3 sum_{i=1}^n 4/i = 12 sum_{i=1}^n 1/i.
 This last summation is, by definition, equal to H_n, the nth member of the Harmonic series 
which grows asymptotically with Theta(log n).
 E[D(q)] = O(log n).
 So, given an arbitrary query point q, chosen independently of the random segment order, 
we expect the query time to be O(log n). This bound applies for individual segment 
endpoints, meaning the total time spent building the trapezoidal map and data structure is 
O(1) + sum_{i=1}^n {O(log i) + O(1)} = O(n log n).

Guarantees on Search Time

 As far as we can tell, though, there may be some query point q for which a search takes 
much longer than O(log n).
 It turns out we can guarantee any search takes O(log n) time, but it requires a more 
complicated analysis.
 Don’t worry, I won’t ask you to do anything like this in the homework!
 Lemma: Fix a query point q and some value lambda > 0. The search depth exceeds 3 
lambda ln(n + 1) with probability at most 1 / (n + 1)^(lambda ln 1.25 - 1).



 Earlier, we defined these random variables X_i and added them up. That was fine for 
computing an expectation. However, the events leading to these random variables are not 
independent, so we cannot easily learn the probability that few of them occur.
 So our first priority is to define some random variables that are independent that we can 
use instead.
 To do that, I’m going to play a weird trick. Let G be a directed acyclic graph. Its nodes are 
subsets of S. There is an arc from one node to another if the second contains exactly one 
more line segment. Therefore, it has one source emptyset and one sink S.
 Call the subsets of size i the ith layer of the DAG.
 Directed paths in G correspond to permutations of S, we keep adding segments one at a 
time as we walk along the path. These correspond to executions of the map building 
algorithm.
 Consider an arc from node S’ to node S’’; it represents inserting some segment s into S’. 
mark the arc if inserting it changes the trapezoid that q lies in.
 We already established that each node has at most four marked incoming arcs.
 Some nodes may actually have fewer than four marked incoming arcs. To make the next 
step work out, we’ll go ahead and mark a couple others so every node has exactly four. For 
nodes in the bottom couple layers, we’ll mark every incoming arc. The important thing is 
that every node in a single layer has the same number of marked incoming nodes and that 
this number is at most 4.
 A random permutation corresponds to a random source to sink path in our DAG. Let X_i  = 
1 if the ith arc on the path is marked and 0 otherwise.
 Every arc going into the ith layer is equally likely to be on the path. There are exactly i 
incoming arcs per node and at most 4 per node are marked, so E[X_i] ≤ 4/i.
 Remember how we marked the same number of arcs per node, though? That means even 
if you know X_i, you don’t know which node lies on the path. Meaning you know nothing 
about the other random variables. They are independent!
 Alright, time for some algebra to take advantage of this independence.
 Let Y = sum_{i=1}^n X_i. The number of nodes on the search path for q is at most 3Y, so we 
want to know the probability that Y > lambda ln(n + 1).
 We’ll use something called Markov’s inequality: given a nonnegative random variable Z, 
Prob[X ≥ alpha] ≤ E[Z] / alpha.
 So for any t > 0, Prob[Y ≥ lambda ln(n + 1)]

 = Prob[e^{tY} ≥ e^{t lambda ln(n + 1)}] 
 ≤ e^{-t lambda ln(n+1)} E[e^{tY}]

 Our variables are independent so E[e^{tY}]
 = E[e^{sum_i t X_i}]
 = E[prod_i e^{t X_i}]
 = prod_i E[e^{t X_i}]



 Set t = ln 1.25. We have E[e^{t X_i}]
 ≤ (4/i) e^t + (1 - 4/i) e^0                [by def. of expectation]
 = (4/i) (1 + 1/4) + 1 - 4/i
 = 1/i + 1
 = (1+i)/i

 And thus prod_{i = 1}^n E[e^{t X_i}]
 ≤ (2/1) (3/2) … (n + 1 / n)
 = n + 1.

 All together, Prob[Y ≥ lambda ln(n + 1)]
 ≤ e^{-lambda ln(1.25) ln(n + 1)} (n + 1)
 = (n + 1) / (n + 1)^{lambda ln(1.25)}
 = 1 / (n + 1)^{lambda ln(1.25) - 1}

 Alright, so we have a bound on the probability that any one point has a long search path.
 Lemma: Fix some value lambda > 0. The maximum search depth exceeds 3 lambda ln(n + 
1) with probability at most 2 / (n + 1)^(lambda ln 1.25 - 3).
 So imagine we partition the plane into vertical slabs by passing a vertical line through 
every segment endpoint. The intersection of these slabs and the n segments further 
partitions the plane into at most 2(n+1)^2 trapezoids.
 Any two points in one of these trapezoids must take the same path through the search 
structure.
 So take an arbitrary set of 2(n+1)^2 query points, one per trapezoid.
 If they all have short search paths, then every point has a short search path.
 And the probability that any one of them has a long search path is at most 2(n+2)^2 / (n + 
1)^(lambda ln 1.25 - 1) = 2 / (n + 1)^(lambda ln 1.25 - 3).

 So, for example, the probability any search path has more than 60 ln(n+1) nodes is at most 
2/(n + 1)^1.5. That get very small very quickly as n grows.
 You can argue a similar bound for the size of the data structure.
 And with this strong of bounds, you can even make a data structure that has good worst-
case size and query time.
 Just run the construction algorithm tracking the depth and size of the data structure as you 
go. Restart if either get too large. With good probability, you’ll only need to try a constant 
number of times. So the O(n log n) construction time is still in expectation, but the size and 
query time are worst-case guaranteed.


