
CS 6301.008.18S Lecture—February 13, 2017

Main topics are #Voronoi-diagrams , #Fortune .

Quick Note about Planar Point Location

 Last week, I started giving a difficult analysis of the planar point location data structure.
 We should move on, but I do want to mention the final punchline.
 There is an O(n log n) expected time algorithm to construct a planar point location data 
structure with worst-case O(n) storage and O(log n) search time.
 Essentially, you’ll probably build the good structure in your first try of running that 
randomized incremental construction.

Voronoi Diagrams

 Let P = {p_1, …, p_n} be a set of n points in R^d we call sites.
 Let ||pq| = sqrt((p_x - q_x)^2 + (p_y - q_y)^2) be the Euclidean distance between p and q.
 The Voronoi cell of site p_i, denote V(p_i) is the set of points closer to p_i than any other 
site.

 V(p_i) = {q in R^2 : ||p_i q|| < ||p_j q||, for all j ≠ i}
 The union of the closure of the Voronoi cells forms the Voronoi diagram.

 The cells are (possibly unbounded) convex polyhedra, since V(p_i) is the intersection of all 
the halfspaces for points closer to p_i than each other point
 Voronoi diagrams have a lot of uses, including

 nearest neighbor queries: to find the nearest neighbor of a point q, just do point 
location in the Voronoi diagram
 shape analysis: we can get a useful sketch of a polygonal shape called the media axis 
if we compute the Voronoi diagram of its vertices and edges
 center-based clustering: we want to partition a set P into subsets of points that are 
close together. If we choose some centers for these subsets, then the Voronoi 
diagram over the centers tells us which points belong in each cluster



Properties

 Voronoi diagrams have several nice properties that make them useful and will be useful in 
their construction

 Empty circle property: Each point on an edge of the Voronoi diagram is equidistant from 
its nearest neighbors. Therefore, there is a circle centered at that point through the 
neighbors with no other site interior to the circle.
 Voronoi vertices: Each Voronoi vertex is equidistant to three sites. Therefore, there is a 
circle centered at the vertex, passing through the three sites, with no other vertex interior.
 Assuming no four sites are cocircular, each vertex has degree 3.
 The Voronoi diagram has n faces, roughly 2n vertices, and roughly 3n edges. The book has 
a proof.

Computing the Voronoi Diagram

 We could compute the Voronoi diagram in O(n^2 log n) time by solving n halfspace 
intersection problems, one per site.
 Instead, I’ll give an O(n log n) time sweep line algorithm due to Fortune [’87].
 There’s also a randomized incremental construction algorithm. You should see a version of 
that next week for a related problem.
 So for this algorithm, I’m going to sweep top-down. Partly to match Mount’s notes. Partly 
because certain drawings will be nicer that way.
 Now,  it’s temping to try designing the algorithm in the following way: sweep from top to 
bottom and maintain the whole Voronoi diagram from infinity down to the sweep line. Like 
in line segment intersection, we’ll try to discover Voronoi vertices before we reach them 
and add them to the event queue if necessary.
 But it’s not that simple:



 Sites we haven’t reached yet will create Voronoi vertices we’ve already passed!
 So instead, we’ll accept that we haven’t computed everything up to the sweep line. 
Instead, we’ll have computed everything up to an x-monotone curve called the beach line 
that lags behind the sweep line and essentially forms the boundary of what we know so 
far.
 More formally, the sweep line divides the plane into two halves, the stuff above it that 
we’ve swept already and the stuff below.
 We’ll treat the sweep line as another infinitely long site. The beach line is just the boundary 
of its site: those points equidistant from their nearest neighbor above the line and the line 
itself.
 Anything we’ve computed strictly above the beach line belongs to the final Voronoi 
diagram: after all, the sweep line is already closer than any site that lies below it.
 OK, so what does the beach line look like and why do we call it a beach line?
 Given the sweep line ell and a site p, the points equidistant from both form an x-monotone 
parabola. As ell moves downward, the parabola gets fatter. In contrast, the parabola is a 
vertical ray shooting up if p lies on ell.
 The beach line is the lower envelope of the parabolas for all the sites, so its composed of 
several parabolic arcs.

 The arcs intersect at breakpoints which are equidistance between the arcs’ points and ell. 
Meaning breakpoints lie on Voronoi edges.
 Our goal is to simulate the movement of the beach line as the sweep line moves 
downward. Breakpoints will trace the path of the Voronoi edges.

Sweep Line Status and Events

 We don’t have to track all continuous changes, so we just need to find figure out some 
useful sweep line status and important events.



 Sweep line status:
 y-coordinate of the sweep line
 sites defining the beach line arcs in left-to-right order (a parabola can appear on the 
lower envelope multiple times, so some sites may appear in the list multiple times!)
 We do not store the parabolas themselves or their equations.

 Events:
 site events: when the sweep line passes over a site: a new parabolic arc joins the 
beach line
 Voronoi vertex events: if the length of a beach line arc shrinks to 0, then its incident 
breakpoints collide, forming a vertex. The book calls these circle events.

 Let’s look at the two event types in more details.
 Site events:

 Say the sweep line passes over p_i.
 At the moment of a site event, we get a degenerate parabolic arc shooting up from 
p_i.
 Let’s say that ray hits a beach line arc for p_j.
 The arc gets split into two, and the new arc for p_i starts growing.
 So, we replace a sweep line status entry for p_j with p_j p_i p_j

 The book proves that site events are the only way to add new arcs to the beach line. Each 
site event after the first creates a net of two new arcs, so the beach line and therefore 
sweep line status contains at most 2n - 1 parabolic arcs.
 Voronoi vertex events:

 Remember, Voronoi vertices are made when beach line arcs shrink to nothing.
 So we focus on the three adjacent arcs involved in this process, so p_i, p_j, and p_k’s 
arcs appear consecutively in left-to-right order.
 Suppose their circumcenter will eventually become a Voronoi vertex, where the 
breakpoint/bisector for p_i and p_j will meet the one for p_j and p_k.
 Immediately before their breakpoints meet, the circumcircle lies partially below the 
sweep line, but there is no other site reached by the sweep line before the 
breakpoints meet.
 At the moment the sweep line goes tangent to the circumcircle, the breakpoints meet 
and p_j’s arc disappears.
 From that point forward, p_i and p_k share a breakpoint which traces out a new 



Voronoi edge from the vertex we just discovered.

The Algorithm

 So now we’ve seen enough to present the algorithm.
 Data structures:

 A (partial) Voronoi diagram stored as a doubly connected edge lists. Some edges are 
unbounded or dangling, but we can pretend that the unbounded edges all connect at 
an imaginary Voronoi vertex at infinity. I’ll assume we can update the diagram in 
constant time per change.
 The beach line is stored as a sequence of sites owning its arcs in left-to-right order 
using an ordered dictionary. It needs to support some operations in O(log n) time 
each:

 Search: Given the current y-coordinate of the sweep line and a new site p_i, find 
the arc lying above p_i. To do this fast, we need some way to say whether p_i lies 
left or right of a breakpoint so we can binary search. Suppose p_j and p_k share a 
breakpoint. That breakpoint is at the center of the circle through p_j and p_k that 
is tangent to the sweep line, so compare p_i to the center of that circle.
 Insert and split: Insert an arc for p_i within a given arc for p_j, replacing beach line 
<…, p_j, …> with <…, p_j, p_i, p_j, …>
 Delete: Remove a particular arc for p_j, changing the status from <…, p_i, p_j, 
p_k, …> to <…, p_i, p_k, …>

 Event queue needs to support insert, deletion, and finding the upcoming event with 
the largest y-coordinate in O(log n) time.

 Site events can be precomputed before we start sweeping since we already know 
the y-coordinates of the sites.
 For Voronoi vertex events, we’ll take consecutive triples p_i, p_j, p_k from distinct 
points on the beach line, and compute their circumcircle. The y-coordinate for the 
event is the y-coordinate of the bottom of the circle, since that’s where the sweep 
line goes tangent to the circle.

 And we have pointers/references going back and forth to figure who is responsible 
for what and why.
 Finally, he’s a sketch of how we handle events.



 Site events at site p_i.
 Advance sweep line past p_i. Search for p_j whose arc is above p_i.
 Insert-and-split p_i at that arc.
 Create a new dangling edge lying on the bisector of p_i and p_j that follows the 
new breakpoints. It has no (finite) endpoints yet!
 Remove vertex events for triples that no longer exist and add new ones. Note new 
triple p_i p_j p_i does not get an event because it has only two distinct sites.

 Voronoi vertex events at p_i, p_j, and p_k:
 Remove p_j’s arc from beach line status.
 Create new Voronoi vertex at circumcenter of p_i, p_j, and p_k and join Voronoi 
edges for bisectors (p_i, p_j) and (p_j, p_k) at this vertex.
 Create a new dangling edge for bisector between p_i and p_k. One endpoint is 
on the new vertex.
 Delete events from triples involving p_j and add new events for triples involving 
p_i and p_k.

 Events take a constant number of data structure operations to find and process. 
Sweep line status has O(n) arcs and there are O(n) Voronoi vertex events in the queue 
at once so all operations take O(log n) time each. The total number of events is O(n) 
so the running time is O(n log n).


