
CS 6301.008.18S Lecture—February 20, 2017

Main topics are #Delaunay_triangulations , #randomized_incremental_construction .

Prelude

 I’ve put up a page about the course projects on the class website.
 Groups of up to three can participate in a project where you try to solve a theoretical 
problem, experiment with some different algorithms for a problem, or write a survey 
describing some problem you’re interested in.
 My hope is that you’ll work on questions you want to know the answer to and whose 
answers will be useful in future careers; whether you’re prepping for industry or further 
research.
 Each individual should write a 1 to 2 page project proposal describing what you want to 
do, what is known  or at least what you know is known.
 I want to post proposals to the website so you can look at each others’ for inspiration and 
find your groups.
 And I’d like the proposals turned into eLearning as pdfs by March 6th. That’s two weeks 
from today.
 I think I’ll give two more regular homeworks after that, but I’ll make them lighter so you can 
work on your projects in parallel.
 And at the end of the semester each group should write an about 10 page paper and do a 
20 minute presentation describing their progress or what they learned.
 Again, please see the website for details, and feel free to talk with me if you’re looking for 
project ideas.

Constructing Delaunay Triangulations

 Last Thursday, I introduced the Delaunay triangulation. A way to connect n sites P = {p_1, 
…, p_n} via edges to create a number of triangles so that the resulting graph has some 
nice properties.
 Today, we’re going to discuss constructing one.
 The definition I gave for the Delaunay triangulation was to take a Voronoi diagram and 
connect pairs of sites if they have neighboring Voronoi cells.
 On Tuesday, I described an O(n log n) time plane sweep algorithm to construct a Voronoi 
diagram. We could just run that algorithm and then construct the Delaunay triangulation.
 However, there is a more simple incremental construction algorithm for building the 
Delaunay triangulation directly. This solution is much more practical, but adding vertices in 
the wrong order leads to an O(n^2) running time.



 But as you might expect from previous lectures, we can prove that adding the vertices in 
random order leads to an O(n log n) expected running time.

Adding a Site

 Like usual, I’ll assume we already have some sort of solution before even adding the first 
site. To do that, let’s add three points that form a really really big triangle around the input 
sites.
 It must be so big that when we remove it later, we only destroy triangles that lie strictly 
outside the Delaunay triangulation of the input sites.
 The book describes a way to do this symbolically so that you can be sure the triangle is 
large enough.
 The incremental construction algorithm uses two basic operations that change the 
tentative triangulation.

 Joining a site inside a triangle to the triangle’s vertices. This will be the way we initially 
add sites.
 Performing an edge flip like we saw at the end of Thursday’s lecture. Edge flips fix bad 
parts of the triangulation.

 Since it’s an incremental construction algorithm, we’ll add the sites one-by-one. 
 Suppose we want to add a new site p inside triangle abc. I’ll show later how to find this 
triangle quickly.

 We add site p by connecting it to each of a, b, and c. But is our new triangulation 
Delaunay?
 Remember, the triangulation is a Delaunay triangulation if and only if the circumcircle 



around each triangle is empty. We call this the empty circle condition.
 Every triangle that doesn’t contain p was present before we added p. We’ll just check 
triangles that do contain p.
 Each of those triangles has one edge opposite p. I’ll argue later that it suffices to check if 
the triangle contains the vertex on the other side of that edge.
 The algorithm checks the empty circle condition for each triangle incident to p. For each 
that doesn’t meet the empty circle condition, we do an edge flip.
 But this creates more triangles incident to p! We recursively check the new triangles as 
well.
 Here’s the code:

 Insert(p):
 find triangle abc containing p.
 insert edges pa, pb, and pc.
 SwapTest(ab)
 SwapTest(bc)
 SwapTest(ca)

 SwapTest(ab):
 if ab is on external face, return
 let d be the vertex in ab’s other triangle
 if d is in circumcircle for p, a, and b:

 flip edge ab for pd
 SwapTest(ad)
 SwapTest(bd)

 And that’s it! Time permitting, I’ll even show you how to do the empty circle test in O(1) 
time
 So the algorithm is pretty simple, but is it correct? And how long do all these recursive 
empty circle tests and edge flips take?

Correctness

 The only big question when it comes to correctness is whether just checking the three sites 
near a triangle suffices to satisfy the empty circle test for all triangles.
 We say a triangulation is locally Delaunay if for each triangle abc, the vertices lying 
opposite on the three neighboring triangles satisfy the empty circle property for abc.
 A triangulation is globally Delaunay if the empty circle property holds for every triangle 
and every site of P.
 Delaunay’s Theorem states that locally Delaunay implies globally Delaunay.
 Let’s show something a bit easier and more closely related to our algorithm. Say we have 
newly added triangle pab with d opposite edge ab. If d is outside the circumcircle for pab, 



then no other point is inside that circle.
 So let’s say d is outside that circle, but there is another site e inside the circle. Just to make 
this easy, suppose e is on the other triangle of bd.
 You can argue then that this bigger circumcircle of triangle bde contains a.

 But triangle bde existed before we even added p, and inductively we can assume we 
started with a Delaunay triangulation before we added p.

Point Location

 But there’s one big thing I haven’t addressed yet. How do we figure out which triangle 
contains p?
 The book suggests incrementally building a point location data structure like we did for 
trapezoidal maps. But there’s something a bit more simple we can do.
 We’ll store the sites we have yet to insert in a collection of buckets, one per triangle. The 
bucket for a triangle contains the sites that lie inside the bucket.
 So when we add a site, we just check the triangle for its bucket.
 Whenever an edge is flipped or we split a triangle into three through the insertion of a 
new site, we end up destroying an old triangle and creating some new ones.
 We’ll just take all the points from destroyed triangle’s buckets and redistribute them into 
buckets for the new triangles. This takes O(1) per site we rebucket.
 So for the analysis, we need to determine

 how many new triangles are created in expectation with each newly inserted site, and 
 how many times each site gets rebucketed

 We’ll do both of those through backwards analysis.

Making Triangles

 So suppose we’ve added i sites, and fix which ones they are. The Delaunay triangle for 
these i sites is the same no matter which order they were added.
 Suppose p is the last one we added.
 Well, when we added p, we added three new triangles that contained p. Then we 
performed a bunch of edge flips.



 But each time we did a flip, we added one more edge to p.
 Therefore, the time spent adding triangles is proportional to the degree of p after the 
insertion is complete.
 Ah, but we know there are at most 3i edges in the triangulation for those i sites.
 Therefore, there are 6i edge endpoints. There average site has degree 6.
 Since any one of the i sites is equally likely to be the last one added, the expected degree 
of p is therefore ≤ 6 = O(1).
 Summing over all n insertions, the expected total number of triangles added is O(n). Each 
one can be added in O(1) time.

Rebucketing

 So when we remove a triangle and add new ones, we have to rebucket its points. 
Rebucketing takes O(1) time per point being moved.
 It turns out each point needs rebucketed during O(log n) of the insertions in expectation.
 Consider a site q that still needs inserting after i insertions.
 What is the probability that the last insertion required a rebucketing of q? It is equal to the 
probability that q’s triangle changed during the last insertion.
 But we only add a triangle if one of its incident sites was added. There are three sites, each 
of which is equally likely to be added, so q got rebucketed with probability at most 3/i.
 How many insertions rebucketed q in expectation? We’ll be lazy and assume q was in a 
bucket during every insertion. sum_{i = 1}^n 3 / i  = 3 sum_{i=1}^n 1/i = 3H_n = O(log n).
 So it seems like we’ll spend O(n log n) time rebucketing in expectation.
 Alright, but this isn’t really a perfect analysis of the algorithm. The problem is that I’m 
ignoring how you sometimes need to rebucket a site multiple times during a single 
insertion.
 That isn’t an issue in your homework, by the way.
 Intuitively, each insertion causes O(1) triangle changes, so we really only need to multiply 
by a constant. But the real analysis is more subtle. Check out your book if you’re 
interested.
 Overall, we end up spending O(n log n) time in expectation rebucketing sites.


