
CS 6301.008.18S Lecture—March 1, 2017

Main topics are #Delaunay_triangulations , #3D_convex_hulls , #Voronoi-diagrams , 
and #3D_upper_envelopes .

Prelude

 Project proposals are due Tuesday. Feel free to email me or visit office hours if you want to 
discuss ideas.

From Planar Subdivisions to 3D Polytopes

 So far, we have mostly focused on algorithms and data structures for the plane.
 Some of these problems and their algorithms generalize pretty easily:

 Linear programming
 kd-trees and orthogonal range trees

 And for others, the definitions generalize, but the algorithms don’t generalize so cleanly:
 Convex hulls: Intersection of all halfspaces containing all points
 Upper/lower envelopes: Intersection of  upper / lower halfspaces for a given set of 
(hyper)planes
 Voronoi diagrams
 Delaunay triangulations

 One informal explanation is that objects in higher dimensions are in some sense strictly 
more complicated than those in lower dimensions.
 In particular, we can sometimes solve complicated lower dimensional problems by 
transforming them to seemingly easier problems in higher dimensions.
 I want to give two examples today:

 The Delaunay triangulation of a planar point set is topologically equivalent to the 
boundary complexity of a convex hull of a 3D point set.
 The Voronoi diagram of a planar point set is topologically equivalent to the boundary 
complex of the intersection of a bunch 3D halfspaces.

 This also gives us an opportunity to look at some neat 3D stuff that isn’t yet another 
example of incremental construction.

Delaunay Triangulations and Convex Hulls

 Both examples rely heavily on a certain paraboloid in 3D Psi with equation z = x^2 + y^2.
 To relate this paraboloid to points in the plane, we’ll define vertical projections, sometimes 
called lifts. The vertical projection of p = (p_x, p_y) is a 3D point on Psi: p↑ = (p_x, p_y, 
p_x^2 + p_y^2).



 Since this map is a bijection, I might get sloppy and refer to p as the projection of p↑.
 Given P in the plane, let P↑ denote the projection of every point of P onto Psi.
 Now, consider the lower convex hull of P↑, the portion of the convex hull visible from z = -
infinity.
 Assuming general position, each face is a triangle. But there’s something special about 
these triangles…

 I claim, in fact, that if you project the edges of the lower convex hull back down to the 
plane, you get the Delaunay triangulation!
 In particular, given p, q, and r in P, triangle p↑q↑r↑ is a face of the lower convex hull of P↑ 
if and only if triangle pqr is a triangle of the Delaunay triangulation of P.
 To see that, we need to recall tests for if we have a Delaunay triangulation or convex hull:

 Delaunay condition: p, q, and r form a Delaunay triangle if and only if no other point 
of P is in the circumcircle for triangle pqr.
 Convex hull condition: p↑, q↑, and r↑ form a convex hull face if and only if no other 
point of P↑ is below the plane passing through p↑, q↑, and r↑.

 So to prove my claim, it suffices to prove the following lemma.
 Lemma: Let p, q, r, and s be distinct points of P. Point s lies within the circumcircle for 
triangle pqr if and only if s↑ lies beneath the plane passing through p↑, q↑, and r↑.
 To start, let’s establish the general relationship between lower halfplanes in 3D and circles 
in 2D.
 Fix some non-vertical plane in 3D lying tangent to Psi at point (a, b, a^2 + b^2).
 Let’s figure out the equation for this plane. To do that, observe partial z / partial x = 2x and 
partial z / partial y = 2y.
 These partial derivatives evaluate to 2a and 2b at the tangent point, so the plane has the 
form z = 2ax + 2by + gamma.
 Using the tangent point to solve for gamma, we have a^2 + b^2 = 2a * a + 2b * b + 
gamma, implying gamma = -(a^2 + b^2). The tangent plane is z = 2ax + 2by - (a^2 + b^2).



 Now, suppose we shift the plane upward by lambda^2 units. We get the plane  z = 2ab + 
2by - (a^2 + b^2) + lambda^2.
 The intersection points of this plane with Psi are ones in which x^2 + y^2 = 2ax + 2by - 
(a^2 + b^2) + lambda^2 which implies (x - a)^2 + (y - b)^2 = lambda^2.
 But that’s the equation for a circle in the plane centered at (a, b).
 So what happened here? We could have created any plane via this process. So we have a 
proof that a plane’s intersection with Psi is the projection of a circle in the plane.
 In particular, the parts of Psi under the plane are the projection of points inside the circle.

 So take p, q, and r from the lemma statement. The projection of their circumcircle is the 
intersection of the unique plane through p↑, q↑, and r↑ with Psi.
 So if s lies inside the circle, then s↑ lies on the part of Psi below the plane. Otherwise, it lies 
on the part of Psi outside the plane. We’ve finished proving the lemma.
 So, Theorem: Given p, q, and r in P, the triangle pqr is in the Delaunay triangulation if and 
only if the triangle triangle p↑q↑r↑ is a face of the lower convex hull of P↑.

 The triangle is in the Delaunay triangulation if and only if there is no point s in P inside 
the circumcircle if and only if there is no point s↑ in P↑ below the plane through 
p↑q↑r↑ if and only if triangle p↑q↑r↑ is a face of the lower convex hull.

 Before we move on, I want to give one nice application of this result.
 Part of building the Delaunay triangulation is to test if a point s is inside the circumcircle of 
three points p, q, and r.
 Say p, q, and r are counterclockwise around the triangle. We can define a function 
inCircle(p, q, r, s) that is negative if s is outside the circle, 0 if s is on the circle, and positive 
otherwise, similar to those orientation tests we discussed in the first lecture.
 inCircle(p, q, r, s) can be defined as the result of an orientation test of the projected points 
so that orient(p↑, q↑, r↑, s↑) is negative if s is above the plane through p, q, and r, 0 if s is in 
the plane, and positive if s is below.

 So you still need to do some algebra for a formal proof this all works, but you might get 
some intuition at least.



Voronoi Diagrams and Upper Envelopes

 Earlier in the semester we discussed how lower convex hulls and upper envelopes are 
“dual” to one another by point-line duality.
 Later, we defined Delaunay triangulations as the planar graph dual of Voronoi diagrams.
 Since two wrongs make a right (or two duals make a primal), it makes some intuitive sense 
then that Voronoi diagrams are related to upper envelopes.
 Let’s formalize that notion. We’ll start by mapping a planar point set to Psi, not as points 
but instead planes.
 Earlier, we argued that for a point p = (a, b) in P, the plane tangent to Psi at p↑ is z = 2ax + 
2by - (a^2 + b^2).
 Let h(p) denote this plane.
 Now, consider any other point q = (q_x, q_y) in R^2. Recall q↑ = (q_x, q_y, q_z) where q_z 
= q_x^2 + q_y^2.
 Because h(p) is tangent to Psi, it lies below every point of Psi, including q↑.
 The vertical distance from q↑ to h(p) is therefore:

 q_z - (2aq_x + 2bq_y - (a^2 + b^2))
 = (q_x^2 + q_y^2) - (2aq_x + 2bq_y - (a^2 + b^2))
 = (q_x^2 - 2aq_x + a^2) + (q_y^2 - 2bq_y + b^2)
 = (q_x - a)^2 + (q_y - b)^2
 = ||qp||^2

 So the vertical distance from q↑ to h(p) is the squared distance from q to p.

 Which implies…
 Lemma: Let H(P) = {h(p) : p in P}. For any point q in R^2, the vertical ray directed downward 
from q↑ intersects the planes of H(P) in order of increasing distances of points in P from q.
 So let U(P) be the upper envelope of H(P). If q↑ lies directly above h(p), then p is its closest 
point.
 Theorem: Let U(P) be the upper envelope of tangent hyperplanes to Psi at each point p↑ 
for p in P. The Voronoi diagram of P projects to the boundary complex of U(P).



Higher Order Voronoi Diagrams and Arrangements

 So far we discussed Voronoi diagrams based on the nearest site to each point.
 There’s a generalization called the order-k Voronoi diagram: subdivide the plane based on 
the k nearest sites to each point.
 So for order-2 diagrams, each cell is labeled with a pair of sites indicating which are the 
two closest to points in the cell.
 Those hyperplanes H(P) defined earlier create an arrangement in R^3, dividing up space 
into polytopes, faces, edges, and vertices.
 I talked about levels on Tuesday. The kth level of the arrangement is the set of points in 3D 
for which there are at most k - 1 hyperplanes above and at most n - k hyperplanes below.
 From the earlier lemma on distances, the bottom boundary of the kth level is the 
projection of the order-k Voronoi diagram. The k hyperplanes below you tell you exactly 
which are the k nearest sites, and in what order.
 If all you care about is subsets of nearest sites and not their order, you actually have a 
refinement of that diagram.

 Finally, the lower envelope of H(P) tells you which sites are farthest away from each point. 
This is called the farthest-point Voronoi diagram.


