
CS 6301.008.18S Lecture—April 3, 2018

Main topics are #range_spaces  and #VC_dimension .

Prelude

 Please respond to my email about project groups if you haven’t already. I need to figure 
out how much time we have left for lectures and schedule talks. Thank you.

Range Spaces

 Today, we’re going to discuss grouping subsets of points by geometric objects and how to 
get a handle on these tasks.
 Here’s one situation where you might group a subset based on geometric objects. Let’s 
say you’re installing wireless routers around campus. Each router effectively serves a disk 
of radius 1.
 You’re given a list of locations that need service. How can you place as few routers as 
possible to service all those locations?

 In other words, you’re given a collection of elements and a collection of subsets (who is 
served by each possible router location), and you want to cover all the elements with as 
few subsets as possible.
 This is a well-known NP-hard problem called set cover. It turns out defining the sets using 
these disks makes the problem a bit easier. We’ll get to why after a good while.
 First, let’s talk about a more general setting. We’re given a set P of n points in R^d as usual.
 We let 2^P denote the power set of P, the set of all subsets of P.
 The power set has 2^n elements, but if we constrain ourselves to only considering subsets 
of P lying within simple geometric objects, the number of subsets decreases a lot.
 We describe these types of subsets using a range space. A range space is a pair (X, R) 
where X is an arbitrary set (finite or infinite) and R is a subset of 2^X.
 We usually care about how range spaces interact with finite sets. Given P subset X, the 
restriction of R to P is R_{|P} = {P intersect Q : Q in R}.
 For example, if X = R^d, P is a set of n points, and R consists of all interiors of some axis-



parallel rectangle, then R_{|P} is the subsets of P that lie within some axis-parallel rectangle.
 This means there may be some subsets of P that don’t lie in the restriction. For example, {1, 
4} from the figure below.

VC-Dimension

 The restrictions of range spaces based on simple geometric objects have a couple nice 
properties.
 One is that the restrictions don’t have very many sets.
 For example, given a point set P, we can take any axis-parallel rectangle containing a 
subset of P and shrink it down to touch four points of P without changing the set of points 
in that rectangle.
 So in general, a rectangle for each of these subsets can be determined by four points of P. 
The total number of subsets is O(n^4).
 This idea that we can’t create all 2^n subsets motivates the next few definitions.
 Given range space (X, R) and a point set P subset X, we say R shatters P if R_{|P} is equal to 
2^P.
 For example, those four points I drew earlier are not shattered by the range space of axis-
parallel rectangles.
 However, the four points below to the left are shattered by this range space (ignore that 
box on the right for now).

 The Vapnik-Chervonenkis dimension (VC-dimension) of (X, R) is the size of the largest 
subset set P of X that is shattered by R.
 I know this definition is bazaar, but it does sort of capture what we’re looking for. If the VC 
dimension is very high (or even infinite) then you could have a very large number of 
subsets in a restriction. But preventing shattering reduces the number of restrictions as we 
already saw with axis-parallel rectangles (kind of).
 It’s also useful when you want to talk about sampling points to reduce the size of a data 



set, but we’ll get to that in a bit.
 First, some examples:

 Axis-parallel rectangles have VC-dimension 4. We can shatter that example above, so 
it must be at least 4. But suppose we have five points P (and, for simplicity, they are in 
general position). One point q in P does not lie on the smallest axis-parallel rectangle 
holding all five points. But then there is no rectangle containing P \ {q}.
 Euclidean disks in the plane have VC-dimension 3. Below is a set of 3 points shattered 
by disks. But say we have four points P (in general position). If any point is inside the 
convex hull of the others, then any disk containing the others also contains the forth 
point, similar to before. Otherwise, all the points are on the convex hull. Consider their 
Delaunay triangulation, and let a and b be the pair not connected by an edge. By the 
empty-circle property of Delaunay triangulations, any circle containing a and b must 
contain at least one of c or d as well. So no disk contains exactly {a, b}.

Sauer’s Lemma

 I keep arguing that these nice range spaces have a small number of sets in their restriction. 
Let’s finally make that precise.
 We need to define a useful function. Given 0 ≤ d ≤ n, define Phi_d(n) to be the number of 
subsets of size at most d over a ground set of size n.
 So Phi_d(n) = (n choose 0) + (n choose 1) + … + (n choose d) = sum_{i=0}^d (n choose i).
 It turns out this function satisfies the following recurrence:

 Phi_d(n) = Phi_d(n - 1) + Phi_{d - 1}(n - 1)
 To see why, fix one element x_0 of the n-element set.
 There are Phi_d(n - 1) subsets of size at most d that do not contain x_0.
 The number of subsets that do contain x_0 is Phi_{d-1}(n - 1) because we have up to d 
- 1 additional elements to choose from for each of these subsets.

 Also, Phi_d(n) = Theta(n^d).
 Sauer’s Lemma: If (X, R) has VC-dimension d and |X| = n, then |R| ≤ Phi_d(n) = Thata(n^d).
 Proof:

 We’ll do induction on d and n. The lemma is trivially true if d = n = 0.
 Fix some element x in X. We define two new range sets:

 R_x = {Q \ {x} : Q union {x} in R and Q \ {x} in R}
 R \ {x} = {Q \ {x} : Q in R}

 So R_x has pairs of ranges that are identical except one contains x and the other does 
not. Maybe x is on the side of some axis-parallel rectangle. So you take the points in 



the rectangle and the points in the slightly smaller rectangle not containing x.
 R \ {x} is just what remains of the ranges after throwing out x.
 I claim |R| = |R_x| + |R \ {x}|. To see why, charge each range of R to its corresponding 
range in R \ {x}. Every range in R \ {x} receives at least one charge. It receives two if it is 
one of two identical ranges in R except one contains x and the other does not. But R_x 
contains a second copy of that range so we’re counting correctly.
 Time for induction. I claim (X \ {x} , R_x) has VC-dimension at most d-1. Otherwise, 
there is some set P’ of size d that can be shattered by R_x. But for each member of 
2^P’, there are two subsets in R, one with x and one without. We can shatter the d + 1 
element set P’ union {x} which contradicts R having VC-dimension d.
 Also, R \ {x} has VC-dimension at most d. Any subset P’ of R with d + 1 members is a 
subset of X as well, so we cannot shatter such subsets.
 So, we have |R|

 = |R_x| + |R \ {x}|
 ≤ Phi_{d - 1}(n - 1) + Phi_d(n - 1)
 = Phi_d(n)

Measures, Samples, and Nets

 So range spaces of low VC-dimension have small restrictions.
 Another property they have is that we can easily approximate the ways in which a large set 
of points intersect ranges. How do we make this precise?
 For simplicity, say we have a range space (P, R) where P is finite.
 Given Q in R, Q’s measure is the fraction of P that it contains. We denote it as mu(Q) = |Q 
intersect P| / |P|.
 Given a sample S subset P, the estimate of Q is mubar(Q) = |Q intersect S| / |S|.
 S is a good sample if estimates are about equal to measures.
 Given eps > 0, we’ll say S is an eps-sample if for any range Q in R, we have |mu(Q) - 
mubar(Q)| ≤ eps.
 So if eps = 0.1 and Q encloses 60% of P, then Q encloses 50-70% of S if S is an eps-
sample.
 Samples provide good estimates on how much of P lies in any given range.
 But maybe we just want a sense of what are the important ranges. In our router example, 
maybe we only care about router locations that cover at least 10% of sites.
 Given eps > 0, we’ll say S is an eps-net if for any range Q in R with mu(Q) ≥ eps, Q 
contains at least one point of S. In other words, the net catches every large range Q.
 So if eps = 0.2 and |P| = 25, then any range with at least 5 points from P will have at least 
one point of S.
 The figure below shows the example set P, an eps-sample, and an eps-net in left-to-right 



order.

 Any eps-sample is an eps-net, but eps-nets are often much smaller than would be needed 
to get an eps-sample.
 So how do we find a good sample or net? It turns out we can just take elements at random, 
assuming the VC-dimension is small.
 Theorem: Let (X, R) be a range space of VC-dimension d, and let P be any finite subset of 
X. There exists a positive constant c (independent of R) such that with probability 1 - phi a 
random sample S of P of size at least

c / eps^2 (d log d / eps + log 1 / phi)
is an eps-sample for (P, R_{|P}).
 So if d and phi are constants, you just need O((1 / eps^2) log (1 / eps)) points in your 
random sample. That number has no dependency on the size of P!
 Theorem: Same as above, but now a random sample S of P of size at least

c / eps (d log 1 / eps + log 1 / phi)
is an eps-net for (P, R_{|P}) with probability 1 - phi.
 So for constant d and phi, you need only O((1 / eps) log (1 / eps)) points in the sample.
 The proofs are fairly technical, so I will not be going over them.
 Next time, we’ll discuss an algorithmic application of the eps-net theorem: how to get 
good set cover approximation algorithms.


