
CS 6301.008.18S Lecture—April 10, 2018

Main topics are #locality_senstive_hashing .

Prelude

 This is the last real lecture of the semester. We’ll start presentations next week. I’m looking 
forward to seeing what you’ve been working on!

Approximate Nearest-Neighbor

 We’ll continue our discussion of higher dimensional inputs and arbitrary metrics by 
focusing on a specific problem defined for any metric.
 In the approximate nearest-neighbor problem, you’re given a metric (X, d) and a subset S 
of X with n elements. You want to preprocess S to answer approximate nearest-neighbor 
queries denoted as NN(q, r, c).

 If there is some x in S such that d(q, x) ≤ r, then report some y in S such that d(q, y) ≤ cr.
 If there is no x in S such that d(q, x) ≤ cr, then report failure.
 Otherwise, report some x in S such that d(q, x) ≤ cr or fail. Either is fine.

 So this is similar to our approximate decision procedure for set cover and hitting set.
 When c = 1, then it’s just a query for whether the nearest neighbor to q is within distance r. 
Like set cover and hitting set, we can binary search for an approximately smallest value to 
find an approximately nearest neighbor to any query point q.
 When r is large, then NN(q, r, c) is good for distinguishing between q being really far from 
the data set and q being close enough. It turns out this problem is much easier to solve 
than finding q’s nearest neighbor exactly.
 Now, if X = R^d for some small constant d, you can answer NN(q, r, (1 + eps)) for any 
constant eps > 0 in O(log n) time using a somewhat involved data structure called a BBD-
tree that takes only O(n log n) space. 
 But like many things we saw this semester, the hidden constants increase exponentially in 
d.

Locality Sensitive Hashing

 Today, we’ll look at a different approach called locality sensitive hashing that works fine in 
high dimensions, although the guarantees aren’t as good.
 The main idea is to randomly choose from a large collection of hash functions specific to 
the metric you care about. If two elements are close to one another, then hopefully they 
hash to the same values.
 We call a probability distribution H over different hash functions a hash family.



 Formally, given a parameter c > 1, probabilities p_1 > p_2, and a distance r ≥ 0, a hash 
family H is (r, cr, p_1, p_2)-Locality Sensitive (LSH) if for all q in X, x, y in S

 If d(x, q) ≤ r, then Pr[h(x) = h(q)] ≥ p_1, and
 if d(y, q) ≥ cr, then Pr[h(y) = h(q)] ≤ p_2.

 So we hope that p_2 is much smaller than p_1.
 This is pretty different from cryptographic hashing where you’d hope two items have 
completely different hash values if they differ at all, but naming is one of the two hardest 
problems in computer science.

Hamming Distance

 Given two m-dimensional bit vectors x and y, their Hamming distance d(x, y) is the number 
of positions at which they disagree.
 So 0010 and 0100 have Hamming distance 2.
 Let H be the hash family where each h in H is assigned a different coordinate so that h(x) is 
x’s value at that coordinate. Hash functions are chosen uniformly at random.
 We get Pr[h(x) = h(y)] = 1 - d(x, y) / m, because there are d(x, y) choices out of m for the 
coordinate that give us a different value for h(x) and h(y).
 As we would hope, x and y are more likely to hash to the same value if their Hamming 
distance is small.
 So in this case, H is (r, cr, p_1, p_2)-LSH for

 p_1 = 1 - r / m and
 p_2 = 1 - cr / m.

Jaccard Distance

 Let U be some universe of elements. Given two subsets S_1 and S_2 of U, the Jaccard 
similarity coefficient J(S_1, S_2) = |S_1 intersect S_2| / |S_1 union S_2|. This is not a metric.
 But the Jaccard distance d(S_1, S_2) = 1 - J(S_1, S_2) is a metric.
 To do approximate nearest neighbors for the Jaccard distance, let each h in H be a 
different permutation pi of H. h(S) = the first element pi in S. Again, we choose an h 
uniformly at random.
 So,  Pr[h(S_1) = h(S_2)] = J(S_1, S_2) = 1 - d(S_1, S_2).
 This H is also LSH.

 p_1 = 1 - r and
 p_2 = 1 - cr.

Angular Distance

 Given two vectors x and y in some R^m, then angle between them is d(x, y) = cos^{-1} ((x 



dot y) / (||x|| ||y||)).
 Now, for each h in H choose a different unit vector u. h(x) = sign(x dot u).
 In other words, h(x) = 1 if x makes an acute angle with u and h(x) = -1 if the angle is obtuse.
 Pr[h(x) = h(y)] = 1 - d(x, y) / pi.
 Again, H is LSH. For any r in [0, pi] and c > 1 with cr ≤ pi,

 p_1 = 1 - r / pi and
 p_2 = 1 - cr / pi.

The LSH Algorithm

 So we have all these nice LSH hash families. How do we use them?
 Say H is (r, c, p_1, p_2)-LSH. We want to build a data structure for NN(q, r, c).
 Fix two parameters k and ell. We’ll figure out what they should be later.
 For each i, j with 1 ≤ i ≤ ell and 1 ≤ j ≤ k, pull h_{i j} independently from hash family 
(distribution) H. These will stay fixed for the life of our data structure.
 Now, for each x in our set of n elements S, and for each 1 ≤ i ≤ ell, store x in bucket g_i(x) 
= <h_{i 1}(x), h_{i 2}(x), …, h_{i k}(x)>. So that’s ell buckets for x, each bucket indexed by a k-
dimensional hash function.
 The data structure will store just the buckets that actually contain some element x along 
with their elements.
 Now, for a query q, we compute g_1(q), g_2(q), …, g_ell(q). We look at each bucket in 
order, and check the elements of S within each bucket. When checking an element x, we 
return it if d(q, x) ≤ cr. We return failure if we run out of buckets or check more than 4 ell 
elements.
 So then the analysis depends upon the following: Suppose there is a point x^* in S such 
that d(q, x^*) ≤ r. Then with constant then probability,

1.  For some i, g_i(x^*) = g_i(q) and
2.  there are at most 4 ell elements in S with d(x, q) > cr such that for some i, g_i(x) = 

g_i(q).
 The algorithm will never check more than 4 ell elements. With constant probability, there 
will be something good to check, that element x^*. And the algorithm won’t give up too 
early doing bad checks for 4 ell elements that are inappropriate to return.
 At this point we need to pick values for k and ell that make the data structure useful.
 The running time of a query is O(ell k). You need to find those ell buckets, and each 
computed by evaluating k hash functions.
 Space usage is O(n ell), though, since you store each point of S in ell different buckets.
 So, we want to pick k and ell as small as possible so that queries have a constant 
probability of success.
 Let rho = ln(p_1) / ln(p_2) = log_{p_2} p_1. In each of the three cases, rho ≅ 1/c.



 For Hamming distance, rho = ln(p_1) / ln(p_2) ≅ (r / d) / (cr / d) = 1 / c. The other cases are 
almost identical.
 Theorem: Let ell = n^rho and k = log n / log (1 / p_2) = - log_{p_2} n. Properties 1 and 2 
both hold with constant probability.
 Proof for 2.

 Consider x’ in S where d(x’, q) > cr. The LSH property implies g_i(x’) = g_i(q) ≤ p_2^k 
for all i, because we’d need to agree with all k hash functions.
 p_2^(k)

 = p_2^(- log_{p_2} n)
 = 1/n

 So for a fixed i, the expected number of x’ that map to the same bucket as q is 1/n * n 
= 1.
 And therefore, the expected total number of false positives is ell * 1 = ell.
 I think I mentioned something called Markov’s inequality earlier in the semester. The 
probability that there are more than 4 ell false positives is at most ell / (4 ell) = 1/4.

 Proof for 1.
 Pr[g_i(x^*) ≠ g_i(q)]

 ≤ 1 - p_1^k
 = 1 - p_1^(-log_{p_2} n)
 = 1 - n^(- log_{p_2} p_1)
 = 1 - 1 / n^rho

 But since we chose ell = n^rho, Pr[g_i(x^*) ≠ g_i(q) for all i]
 ≤ (1 - 1 / n^rho)^{n^rho}
 ≤ 1/ e.

 The probability that both hold is at least 1 - 1/e - 1/4 ≥ 1/3.
 With those settings you get results like the following: If c = 2, then you get do queries that 
succeed with constant probability in about ~O(sqrt(n)) time each (ignoring logs) while 
using only O(n^1.5) space for the data structure. That’s less than linear time and less than 
quadratic space.
 If you want to boost the probability of success, just build data structures with their own set 
of hash functions. O(log n) of them is enough to get really really go probability of success 
for each query.


