
CS 6301.008.18S Lecture—January 16, 2017

Main topics are #line_segment_intersection , #planesweep_algorithms .

Prereq Forms

 Some of you still need to fill out forms. I brought them for you.

Line Segment Intersection

 Today, we’re going to work on the following problem.
 We’re given a set S of n line segments in the plane. We want to report (output) every one 
of their intersections.
 Intersection of geometry objects comes up a lot in computational geometry; for example, 
if you’re working with robotics, you need to know wether two objects may intersect.
 This particular problem of line segment intersection is directly applicable to computing 
map overlays. Say I have a road network represented as some line segments and the 
boundaries of counties or states represented as another set of line segments. The 
intersection points tell me where maintenance responsibilities change along road 
segments. We may also just want to know where you’re entering and exiting boundaries 
on a map.
 Now, you might observe that a collection n line segments might have no intersections, or it 
might have all (n choose 2) = Theta(n^2) intersections.
 So if all we care about is worst-case performance, then we may as well just test every pair 
of line segments and output the intersections we find in optimal O(n^2) time.
 But consider that application I just described. Not every road in the state crosses every 
county boundary. We shouldn’t expect anywhere near Omega(n^2) intersections in 
practice, so we should try to find algorithms that are much faster when there are few 
intersections.
 We want to find a good output sensitive algorithm like we did for convex hulls last week.

 Like before, we’ll assume some “general position” assumptions:
 The endpoints of the line segments and the intersection points have distinct x-
coordinates.
 If two line segments intersect, they do so at a single point.
 No three line segments intersect at a common point.

 The textbook goes into more detail than I will today and avoids most of these 
assumptions.



Plane Sweep Algorithm

 Let n = |S| and I = the number of intersections.
 We’ll discuss and algorithm of Bentley and Ottmann [’79] that runs in O(n log n + I log n) 
time.
 The main method behind this algorithm is called a plane sweep.
 What we’ll do is sweep a vertical line across the plane from left to right (I’m doing vertical, 
because that’s my preference. The book uses a horizontal line going down).
 As the line moves from left to right, we’ll be intersecting a subset of the line segments. This 
subset and possibly some additional information about the line segments is called the 
sweep-line status. 
 We’ll formally define the sweep-line status shortly. But for now, I’m going to claim any 
reasonable status changes only when the sweep line hits line segment endpoints or 
intersections.
 We’ll call these points event points.

 From the perspective of sweeping the plane, the event points are the only interesting 
moments. For this reason, the algorithm does nothing between event points. You can 
imagine the sweep line moving from left to right, but between event points all algorithm 
data structures remain unchanged.
 But, we do need to know what’s going on at event points, and we want to output all the 
intersections, so the algorithm is going to store a few things:

1.  the partial solution of intersection points already found to the left of the sweep line
2.  the current status of the sweep line itself
3.  a subset of future event points that need processed—more on this later

Detecting Events

 OK, so imagine we’re at an event point and we want to know which ones are coming up.
 How do we know when we’ll hit the next event point?
 Well, before the plane sweep even begins, we can preprocess all the line segment 
endpoints. In fact, we can sort all the endpoints in left to right order in O(n log n) time so 



we know the order in which they will be swept.
 But we can’t find the line segment intersections ahead of time. That would defeat the 
purpose of running the algorithm in the first place!
 Instead, we’ll try to figure out a subset of the event points that is small enough to be 
manageable but also contains every event point we need before we hit it.
 So say we have several line segments on the sweep line, but there are two that are very 
close together and have different slopes.
 Lemma: Consider two segments s_i, s_j in S that intersect at some point p = (p_x, p_y). 
Then, s_i and s_j are adjacent along the sweep line immediately after the previous event.
 Proof:

 By general position, no three line segments intersect at a common point.
 Infinitesimally left of p, s_i and s_j are closer than any other pair of segments on the 
sweep line and therefore adjacent.
 Let q =(q_x, q_y) be the previous event point. Between q_x and p_x, there are no 
intersections or new line segments introduced to the sweep line.
 Therefore, s_i and s_j are adjacent immediately after q_x.

 So, the only line segment intersection point we must have computed ahead of time is one 
from a pair of adjacent segments along the sweep line.
 Not that we necessarily know which pair is important ahead of time.
 For this reason, we’ll define the sweep line status as the subset of line segments 
intersecting the sweep line ordered from top to bottom along the sweep line. Adjacent 
pairs are consecutive in this ordering.

 So here’s the high level algorithm:
 We’ll store the sweep line status in some data structure that lets us remember the order 
along the sweep line and modify it quickly.
 We’ll store all segment endpoints and all intersections between adjacent line segments in 
another data structure called the event queue that lets us quickly look up the next event 
point.
 At each event, we’ll update the sweep line status, adjust the collection of possibly relevant 
event points, and repeat.
 What remains for today is to give more details on these algorithms and then to describe 
what updates to do to the sweep line status at each event.



Data Structures

 For sweep line status, we need to know the line segments intersecting the sweep line in 
top to bottom order, and we need to do quick updates and useful queries
 For this reason, we’ll store the status as an ordered dictionary.
 An ordered dictionary stores a bunch of ordered elements. There’s lots of implementations 
including balanced binary search trees and skip lists.
 We need one that does the following operations:

 r  insert(s): Insert object s and return a reference r to its location in the ordered 
dictionary.
 delete(r): Delete entry r.
 r’  predecessor(r): Return a reference r’ to object immediately before r (or null if r is 
the first object).
 r’  successor(r): Return a reference r’ to object immediately after r (or null if r is last 
object).
 r’  swap(r): Swap r and its immediate successor returning a reference r’ to its new 
location.

 With something like a balanced binary search tree, you can store m items in O(m) space 
and do these operations in O(log m) time each.
 But like when we were doing Jarvis’s march, we do need to specify how to do comparisons 
before we can use an off-the-shelf ordered dictionary.
 Suppose we’re sweeping the vertical line through (x_0, 0). To decide which of two line 
segments i and j is higher, we can express them with the normal line equations y= a_i x + 
b_i and y = a_j x + b_j. Then line i is higher than j iff a_i x_0 + b_i > a_j x_0 + b_j.

 We’ll use a priority queue to store the event queue. We need one that supports the 
following operations:

 r  insert(e, x): Insert event e with priority x and return a reference r to its location in 
the priority queue.
 delete(r): Delete the entry associated with reference r.
 (e, x)  extract-min(): Extract and return the event from the queue with smallest 
priority x.

 In our setting, the priority will just be the x-coordinate of the event’s event point.

Processing Events

 Now we just need to process events. For this, it’s probably just easiest for me to write out 
the algorithm and explain each step as I go.



 SegmentIntersections(S):
 Insert segment endpoints into event queue.
 While event queue is non-empty, extract the next event point p = (p_x, p_y).
 If p is the left endpoint of segment s:

 Insert s into sweep-line status for line at p_x.
 Let s’ and s’’ be immediately above and below s.
 If there is an event for intersection of s’ and s’’, remove it from event queue.
 If s and s’ intersect, add intersection to event queue.
 If s and s’’ intersect, add intersection to event queue.

 If p is the right endpoint of segment s.
 Let s’ and s’’ be immediately above and below s.
 Delete s from sweep-line status.
 If s’ and s’’ intersect, add intersection to event queue.

 If p is an intersection between s’ and s’’:
 Report intersection of s’ and s’’.
 Swap s’ and s’’ in sweep-line status.
 Remove old events involving s’ and s’’ from event queue.
 Add new intersection events between s’ and s’’ and their new respective 
neighbors.

Analysis

 The sweep-line status has ≤ n segments at all times. The event queue has O(n) events at 
any time.
 Therefore, events takes O(log n) time to process.
 I was the number of intersections. There are 2n + I events processed, so the total running 



time is O(n log n + I log n).
 There is also an O(n log n + I) time algorithm I won’t be giving in this class, as well as an 
Omega(n log n + I) lower bound.

Event Deletion

 One final note if there’s time:
 Why did I find it necessary to delete events when line segments were no longer adjacent? 
Because you may end up adding the same event Omega(n) times otherwise!

 You could also handle this issue by trying to detect if your event queue already has an 
event like the book does, but I think that’s messier.


