
CS 6301.008.18S Lecture—January 18, 2017

Main topics are #polygon_triangulation  and #doubly-connected_edge_lists .

Polygon Triangulation

 Today, and likely Tuesday, we’ll consider the following problem. First some definitions.
 A polygonal curve is a sequence of line segments (edges) where two consecutive line 
segments share end and start incident vertices.
 The first and last vertex may be equal, making the curve closed.
 A polygonal curve is simple if no two elements intersect unless they are incidental.
 A simple polygon is a planar region bounded by a simple polygonal curve.

 We want to triangulate a polygon of n vertices/edges by subdividing it into triangles.

 The main motivation is that triangles are very simple objects, and breaking a region into 
simple objects is a useful first step in any kind of more complicated work.
 The triangulation also hints at a way to traverse a simple polygon. There’s an object called 
the dual graph where there’s one vertex per triangle and edges between adjacent 
triangles. It turns out this object is always a tree if you’re working with the triangulation of a 
simple polygon.
 You may ask if there even exists a triangulation. Well, yes. Any polygon with at least four 
vertices has a diagonal between two of them that does not intersect any edge (you can 
find a proof in the book). You can split the polygon along this diagonal and then 
recursively triangulate the two halves. A simple inductive proof implies the whole thing has 
n - 2 triangles.
 But this algorithm is actually pretty slow since finding a diagonal might take awhile. Today, 
we’ll discuss an O(n log n) time algorithm.
 But first, I should briefly discuss how to represent polygons and their triangulations so we 



can actually implement the algorithm efficiently.

Planar Subdivisions and Doubly-connected Edge Lists

 Simple polygons a special case of planar subdivisions.
 A planar graph is one where we can map vertices to points in the plane and edges to 
internally disjoint line segments between their vertex endpoints. The embedding breaks 
the plane into a number of maximally connected regions called faces. The planar 
subdivision is this combination of vertices, edges, and faces in the plane. The graph need 
not be connected, and the faces may have holes.

 We can represent planar subdivisions using something called a doubly-connected edge 
list or DCEL for short. This is a natural generalization of adjacency lists for general graphs.
 In short, we treat each edge as a pair of twin directed half-edges, each with an origin or tail 
and a destination or head. The origin of one half-edge is the destination of the other and 
vice versa.
 You can imagine half-edges going around faces counterclockwise, so we also store for 
each half-edge the next and previous half-edges along each face.
 There’s also some info for getting between vertices and faces and their incident edges.



 I’ll briefly discuss what we store for each vertex, edge, and face. We shouldn’t need them 
for lectures, but more details appear in Section 2.2 of the textbook.
 For each vertex v:

 Coordinates(v)
 IncidentEdge(v): an arbitrary half-edge with v as the origin.

 For each face f:
 OuterComponent(f): an arbitrary half-edge with f on its left.
 InnerComponents(f): a list of half-edges with f on their left, one per hole in f.

 For each half-edge e->:
 Origin(e->)
 Twin(e->)
 IncidentFace(e->): face to left of e->
 Next(e->): next half-edge IncidentFace(e->)
 Prev(e->)



 With that data structure you can do pretty much any “local” thing in constant time like 
finding an incident face, traversing one edge along a face, or even subdividing an edge 
with a new vertex or subdividing a face by adding a new edge. From here on, we’ll just 
assume we can do all these and similar operations in constant time without worrying about 
the details.

Triangulation Strategy and Monotone Polygons

 So back to triangulations.
 We’re going to do triangulations in two steps.
 First, we’ll decompose the given simple polygon into a collection of simpler monotone 
polygons in O(n log n) time [Lee, Preparata ’77].
 Then, we’ll triangulate each monotone polygon separately and combine the results. This 
step takes only O(n) time [Garey et al. ’78].
 Let’s start with the second step, because it is easier and will help motivate why we go 
through the trouble of doing the first step.
 A polygonal curve C is monotone with respect to line ell if each line orthogonal to ell 
intersects C in one connected component. It is strictly monotone if each intersection is one 
point.
 A simple polygon P is monotone with respect to ell if its boundary can be split into two 
curves, each monotone with respect to ell.



 For lecture, we’re going to consider polygons that are monotone with respect to the x-axis. 
These are called horizontally monotone or x-monotone.
 Now, suppose we have a horizontally monotone polygon. How are we going to triangulate 
it?
 Like Tuesday, we’ll use a plane sweep algorithm, sweeping a vertical line going left to right. 
I’ll assume no two vertices share an x-coordinate.
 The main idea is that whenever the sweep line hits a vertex, we’ll try to triangulate 
everything to the left of the sweep line that we can, and then split off the triangulated 
parts. You can think of this splitting off as pulling leaves out of that dual tree I mentioned 
earlier.
 So let’s take at an example and see how this approach might look.

 Essentially, the untriangulated part (that we haven’t split off yet) looks like a funnel turned 
on its side. One side of the funnel is part of a single edge. The other side is what we call a 
reflex chain.
 A reflex vertex is a vertex with interior angle greater than pi. A reflex chain is a polygonal 
chain along the polygon’s boundary where internal vertices are reflex.
 We can formally state this observation about funnels as the following invariant:
 Invariant: Suppose the sweep line just processed vertex v. Let u be the leftmost vertex we 
haven’t split off. The part of the polygon not split off and left of the sweep line consists of 
an upper and lower horizontally monotone chain. One is a reflex chain from v to u. The 
other is part of an edge from u to the sweep line.
 We’ll now discuss the sweep line algorithm that maintains this invariant. The algorithm will 
store:

 a stack S storing the vertices on the reflex chain with the rightmost vertex on top and u 



on the bottom
 a flag saying whether the reflex chain is on the upper or lower part of the polygon
 the vertex u farthest left in the untriangulated part of the polygon

 TriangulateMonotone(P):
 Sort vertices from left to right as v_1, …, v_n by merging the upper and lower chain of 
P (P is monotone).
 Push v_1 and v_2 onto stack.
 For j  3 to n - 1

 If v_i and S[top] lie on different chains
 Pop all vertices from S
 Insert diagonals from v_i to each popped vertex except u
 Push v_{i-1} and v_i onto S (so u  v_{i-1})

 Else
 While |S| ≥ 2 and <v_i, S[top], S[top - 1]> make a right-hand turn

 Pop S[top]
 Add diagonal to S[top]

 Push v_i onto S.

 In the first case, edge v_i u exists, so u is visible. The chain is reflex and horizontally 
monotone so the chain cannot block itself from v_i. Finally, no other part of the 
polygon can block visibility, because the polygon is horizontally monotone. As we add 
each diagonal left to right, we split off one triangle and former stack vertex.
 The second case is just like Graham’s scan. As long as there’s a right-hand turn, we can 
see S[top - 1] and safely add a diagonal, splitting off S[top]’s new triangle in the 
process.
 Sorting by merging takes O(n) time. We spend constant time per vertex reached by 
the sweep line plus diagonal added for O(n) time total.

Monotone Subdivision

 Now we need an algorithm to split an arbitrary simple polygon into monotone polygons. 
Again, we’ll use a plane sweep algorithm, sweeping from left to right.
 The algorithm is largely based on the following observation: A polygon is not horizontally 



monotone if and only if there is a scan reflex vertex, a reflex vertex where both incident 
edges go left or both incident edges go right.
 The book calls the first kind merge vertices and the second kind split vertices. The goal is 
for the sweep line to discover these two kinds of vertices, and add diagonals to them 
when possible.
 For merge vertices, we’ll need to wait for some point in the future to add the diagonal.
 For split vertices, though, we need to add the diagonal immediately to some vertex further 
left. But how will we know where to add that diagonal?
 Consider a split vertex v. There’s an edge e_a immediately above it and an edge e_b 
immediately below. If we sweep left from v, we’ll encounter some first vertex below e_a 
that is visible.
 helper(e_a): Suppose the polygon interior is below e_a. Let e_b be the edge of the 
polygon just below e_a on the sweep line. helper(e_a) is the rightmost vertex u left of the 
sweep line such that the vertical segment between e_a and u is entirely in the polygon.
 Again, helper(e_a) is only defined if the polygon interior is below e_a. The helper could be 
incident to e_a or e_b or neither.

 See how we can take a segment up to e_a and then down-left to helper(e_a)? That whole 
triangle lies in the polygon, so it’s safe to send a diagonal from v back to helper(e_a).
 Our goal will be to add diagonals from each split vertex back to a helper vertex. We’ll also 
keep track of helper merge vertices, since we can easily send diagonals back to them, 
even from vertices that aren’t scan reflex.
 Let’s formally define the sweep status. We’ll store edges intersected by the sweep line with 
the polygon interior below them along with their helpers. We’ll store them top to bottom 
in an ordered dictionary again, so we can easily figure out what e_a and helper(e_a) are 
relevant for each event.
 We’ll be trying to help out merge vertices whenever we can, so we’ll use a subroutine Fix-
up(v, e) where a) e is above v or incident going up-left and b) the polygon interior is below 
e: if helper(e) is a merge vertex, add diagonal from v to helper(e).
 Now we just need to deal with lots of cases!
 MakeMonotone(P):

 Sort vertices from left to right as v_1, …, v_n.



 For i  1 to n:
 v  v_i
 If v is a split vertex

 Find edge e immediately above v on sweep line.
 Add diagonal to helper(e).
 Let e’ be the lower edge incident to v.
 Add e’ to sweep line status and set helper(e’)  v.

 If v is a merge vertex
 Let e’ be the lower edge incident to v.
 Fix-up(v, e’)
 Delete e’ from sweep line status.
 Find edge e immediately above v on sweep line.
 Fix-up(v, e).
 helper(e)  v

 If v is a start vertex (both incident edges go right and v is not reflex)
 Let e be the higher incident edge on v.
 Add e to sweep line status and set helper(e)  v.

 If v is an end vertex (both incident edges go left and v is not reflex)
 Let e be the higher incident edge on v.
 Fix-up(v, e)
 Delete e from sweep line status.

 If v is an upper-chain vertex (incident edges go both directions and interior is 
below v)

 Let e be incident edge left of v and e’ be the incident edge to the right.
 Fix-up(v, e)
 Replace e with e’ in sweep line status and set helper(e’)  v.

 If v i a lower-chain vertex
 Find edge e immediately above v on sweep line.
 Fix-up(v, e)
 helper(e)  v

 By only going for helpers of edges immediately above each v, we safely add 
diagonals.
 We add diagonals going left for every split vertex, and we make sure to add a 
diagonal to helper merge vertices before their edges go away or they are replaced by 



new helpers. So the resulting polygons are horizontally monotone.
 Finally, each event can be handled in O(log n) time and there are n events, so the 
whole thing + sorting takes O(n log n) time.


