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Main topics are #linear_programming , #backwards_analysis , #range_searching , 
and #kd-trees .

Linear Programming Continued

 Last, we looked at an algorithm for linear programming. We’re given halfplanes {h_1, …, 
h_n} described as linear constraints and an objective vector c.
 Let M be some really really big number. So big that the optimal vertex has coordinates less 
than M. We’ll add two constraints

 m_1 := {x_1 ≤ M if c_1 > 0, -x_1 ≤ M otherwise}
 m_2 := {x_2 ≤ M if c_2 > 0, -x_2 ≤ M otherwise}

 Our initial optimal solution will lie at the intersection of m_1 and m_2.

 Let H_i := {m_1, m_2, h_1, h_2, …, h_i} be our two new halfplanes and the first i original 
halfplanes. Let ell_i be the line bounding h_i. Let C_i := m_1 ∩ m_2 ∩ h_1 ∩ h_2 ∩ … ∩ h_i 
be their intersection. Let v_i be the optimal vertex in C_i.
  2DBoundedLP(H = {h_1, …, h_n}, c, m_1, m_2):

 v_0  corner of C_0
 for i  1 to n

 if v_{i-1} in h_i
 v_i  v_{i-1}

 else
 p  the point on ell_i maximizing objective subject to H_{i-1}
 if p does not exist

 return “Infeasible!”
 else

 v_i  p
 return v_n

 This algorithm takes O(n^2) time.
 But you can do better by randomizing the order of the halfplanes.
 We can pick a permutation uniformly at random in only O(n) time.
 Let X_i be a random variable where X_i = 1 if v_{i-1} not in h_i and X_i = 0 otherwise.



 The time spent solving 1D linear programs to move the optimal vertex is itself a random 
variable equal to O(n) + sum_{i = 1}^n O(i) * X_i.
 By linearity of expectations, E[O(n) + sum_{i=1}^n O(i) * X_i] = O(n) + sum_{i=1}^n O(i) * 
E[X_i].
 Each E[X_i] is equal to the probability that v_{i-1} not in h_i.
 But how do we compute that? It may be tempting to look at C_{i-1} and then ask what is 
the probability any of the remaining n - i + 1 halfplanes change the optimal vertex. But 
now we’re conditioning on what C_{i-1} looks like and things are bit ugly.
 Instead, we’ll use something called backwards analysis where we look at C_i and just ask 
about what happens before and up to its creation.
 Consider v_i. It lies at the intersection of two halfplane boundaries. If neither boundary was 
h_i, then v_i was already the lowest feasible vertex before adding h_i, and v_{i-1} = v_i.
 Now, if you fix v_i and the set of halfplanes h_1 through h_i that led to it, but not their order 
then all permutations of that subset h_1 through h_i are equally likely, and all choices for 
h_i out of that subset are equally likely.
 In particular, one of those two halfplanes is chosen with probability at most 2/i. (The 
probability is actually less if one of the two halfplanes was m_1 or m_2, since neither can 
be the last halfplane chosen.)
 This upper bound on the probability is true no matter which subset of halfplanes makes up 
h_1 through h_i, so E[X_i] ≤ 2/i.
 Therefore, O(n) + sum_{i=1}^n O(i) * E[X_i] ≤ O(n) + sum_{i = 1}^n O(i) * 2 / i = O(n).
 The expected running time is linear!

Higher Dimensions and Closeness to Expectation

 So what if d > 2?
 At a high level, the algorithm changes very little. That step where we find a point on a line 
turns into finding a point on a hyperplane of dimension d -1. To do that, we call the same 
algorithm recursively but in one lower dimension. The base case is d = 1, which is just that 
line searching procedure.
 The run time analysis is similar but a fair bit more messy. You can look at the book or notes 
if you’re curious. The running time comes out to be O(d! n). So for constant d, the 
algorithm still runs in linear time. But d! grows so fast that it’s really only practical for very 
small values of d.
 Now, you may be worried that we only analyzed the expected running time. Is there some 
small probability that the algorithm is still slow?
 Yes, but it’s extremely unlikely. The probability you exceed the expected running time by a 
factor of b is O((1/c)^{bd!}) for any fixed constant c. This gets very very small as d or b 
increase.



 Even in 2D, the probably you exceed the expectation by a factor of 10 is less than the 
probability of getting hit by lightening twice in your lifetime.

Range Searching

 For the next couple lectures, we’re going to consider a different kind of problem.
 Let’s say you are given a set of n points P and a class of range shapes like rectangles, balls, 
etc.. You want to build a data structure to help speed up certain operations.
 Specifically, we’ll later be given one or more query ranges Q, and we want to use our data 
structure to learn about the points of P lying in Q quickly. Again, we know what kind of 
shape Q is in advance, but not which specific Q we care about.
 There’s a few ways to define learning about P. For example…
 Range reporting is returning a list of all points of P lying in Q.
 Range counting is returning a count of the points of P lying in Q. You could also give each 
point p a weight w(p) and return the sum of the weights in Q.
 There are lots of different data structures depending on what kinds of shapes Q can be. 
We’re going to focus on orthogonal rectangular range queries, where we’re guaranteed Q 
is an axis-parallel rectangle.
 Imagine each point is a person in a database and each coordinate tells you some statistic 
like their age, salary, etc. These queries are asking for all people in a certain age range, 
with a certain salary range, etc.
 Most data structures for range searching of any type rely on an idea called canonical 
subsets.
 A collection of canonical subsets {P_1, …, P_k} with each P_i in P is chosen so that any 
intersection of P and an allowable range shape can be formed from the disjoint union of 
canonical subsets. The subsets from the list may overlap, but the subsets for a particular 
range query do not.
 The hard part is finding a small collection of canonical subsets so you don’t waste space, 
and finding a way to quickly pick the right ones during a query so you don’t waste time.
 Typically, we define canonical subsets using a partition tree. This is a rooted, usually binary, 
tree whose leaves are points of P. Each node u is associated with some subset of P, in 
particular the points stored at the leaves of u’s subtree.

One-dimensional Range Queries

 Let’s start with the simple example of orthogonal rectangular range queries in 1D. These 
are simply interval queries.
 So, P = {p_1, p_2, …, p_n} and each query is an interval [x_lo, x_hi].
 Here’s a data structure we can use: sort the points of P from left to right and store them in 



the leaves of a balanced binary search tree.
 Each internal node is labeled with the largest x-coordinate of a descendent leaf.
 Each internal node is also associated with the canonical subset of P equal to points in its 
descendent leaves.

 But! We don’t store the canonical subsets explicitly. If you want to report the points in a 
node’s canonical subset, you only need to traverse its subtree. If you want to do quick 
range counting, you instead record on each node the number/total weight of its points.
 There are O(n) leaves, so it uses O(n) space total. (We can also build it bottom up in O(n 
log n) time.)
 So how do we do a query with this data structure?
 Find the rightmost leaf u with key less than x_lo and find the leftmost leaf v with key 
greater than x_hi. The leaves strictly between u and v are the points in the range.
 To make counting fast, it’s better if we find a small collection of canonical subsets that 
contain all the query points. We’ll take those maximal rooted subtrees shaded in grey.
 So, follow the paths to u and v from the root until they diverge. After divergence, if 
stepping left toward u from w, take the canonical subset of w’s right child. Similarly, if 
stepping right toward v from w, take the canonical subset of w’s left child.
 To count, sum over the total counts for all those canonical subsets in constant time per 
subset. For reporting, look at the leaves in those subtrees in time linear in the size of each 
subset.
 We touch O(log n) canonical subsets during a query. Counting takes O(log n) time per 
query. Reporting takes O(log n + k) time where k is the number of points reported.

kd-trees

 So what about the plane or even higher dimensions?
 We’ll start with a data structure called the kd-tree, designed by [Bentley ’75].
 So originally, this stood for k-dimensional tree. But using k for dimension is confusing, and 
people forgot that’s how it worked. So now we’ll say things like 2 or 3-dimensional kd-tree.
 kd-trees are partition trees. At each node, we subdivide its point set by splitting them 
evenly based on their x-coordinate or y-coordinate.
 Each node t stores

 t.cut-dim: which way we’ll split the points (so 0 for x and 1 for y)



 t.cut-val: at which x or y coordinate should we split the points
 t.weight: the total weight or number of points in t’s subtree

 So if t.cut-dim is 0 and t.cut-val is 400, we’ll store points of x-value < 400 in the left subtree 
and points of higher x-value in the right subtree. We’ll break ties so that the two subtrees 
are as evenly split as possible.
 Nodes with one point are the leaves. They store that point as t.point.

 If you zoom out a bit, here is the picture you see. Each node represents a rectangular 
region of space called a cell. The root’s cell can be thought of as a big rectangle 
surrounding all the points. When you split a node’s points, it’s like you’re splitting its cell 
into two smaller cells for that node’s children.
 These nested cells are sometimes called a hierarchical space decomposition.
 Now, there’s a few ways you can pick cut dimension and cut value. The standard way is to 
alternate between x and y as the cut dimension as I drew, and always set cut-val to be the 
median value so you split the points into two equal subsets.
 You can build this thing in O(n log n) time by first making two sorted lists of points by x-
coordinate and y-coordinate. Then you can search for the median coordinate for each split 
and split up the lists to recursively build the two subtrees in time linear in the number of 
points in a subtree. You get a recurrence like T(n) = 2T(n/2) + n which solves to O(n log n).
 It’s a balances binary tree with O(n) leaves, so its size is O(n).
 We can do range counting with the following procedure:
 RangeCount(Q: the range, u: a node):

 if u is a leaf
 if u.point in Q, return u.weight
 else return 0

 else
 if u.cell intersect Q = emptiest, return 0
 else if u.cell subset Q, return u.weight
 else, return RangeCount(Q, u.left) + RangeCount(Q, u.right)

 Basically, return the whole count if the whole cell lies in the range. Or return 0 if the whole 
cell lies outside the range. Otherwise, search deeper.



 If you want to report, then instead of returning the weight, you return a list of all the node’s 
descendent leaves.
 How long does a query take? Call a node expanded if it and both children are visited by 
the recursive counting algorithm. Except for the root, each visited node has an expanded 
parent, so the running time is proportional to the number of expanded nodes.
 A cell is stabbed if it has a strict intersection with the range. There are more stabbed cells 
than expanded cells, so we’ll just count those.
 Lemma: Any horizontal or vertical line stabs O(sqrt(n)) cells of the tree.
 Proof:

 Suppose the line is vertical. Consider a node with cutting dimension x. The line stabs 
at most one of its children, and if it fails to stab a child, then it won’t stab any 
descendent of that child.
 However, a node with cutting dimension y may have both children stabbed.
 Therefore, each node with cutting dimension x has at most two grandchildren 
stabbed. In general, the number of stabbed nodes increases by a factor of at most two 
every two levels of the tree.
 Let S(n) be the maximum number of stabbed nodes by the vertical line. S(n) = 2 if  n ≤ 
4 and S(n) = 1 + 2T(n/4) otherwise.
 This solves to S(n) = O(2^{log_4 n}) = O(n^(1/2)) = O(sqrt(n)).

 OK, for query range Q to stab a cell, that cell must be stabbed by at least one of the four 
line segments bounding Q. But each of those stabs O(sqrt(n)) cells, so O(sqrt(n)) cells are 
stabbed or expanded. A counting query takes O(sqrt(n)) time. A reporting query takes 
O(sqrt(n) + k) time.
 What about higher dimensions? For those, the kd-tree splits along each of the d 
dimensions, the 0th, the 1st, the 2nd,  and so on then back to repeat the list. It still uses 
O(n) space and can be built in O(n log n) time if d is a constant.
 However, the running time of a counting query increases to O(n^{1-1/d}). 
 Next, we’ll learn about a data structure that uses slightly more space, but has much better 
worst-case query time.


