
CS 6301.008.18S Lecture—February 6, 2017

Main topics are #trapezoidal_maps .

Prelude

 Homework 1 is due today.
 Homework 2 is due in two weeks: Tuesday February 20th by the start of class.

Trapezoidal Maps

 A couple weeks ago, we discussed polygon triangulation: partitioning a simple polygon 
into triangles.
 Today, we’re going to discuss another partitioning scheme that works in even more 
general settings.
 Building this scheme will be the first step in building a data structure for planar point 
location queries: given a point p, which region of a planar subdivision does it live in?
 Let S = {s_1, …, s_n} be a set of line segments that do not intersect except possibly their 
endpoints.
 We’ll assume all distinct segment endpoints have distinct x-coordinates.

 We’ll build a subdivision of space that respects the line segments.
 Start by adding a big bounding rectangle.
 Next, we send two vertical extensions or bullet paths from each endpoint. They go until 
they run into another segment or the boundary of the box.
 The combination of original segments and vertical extensions form a trapezoidal map also 
known as a trapezoidal decomposition.
 Generally, the faces of the map look like trapezoids with vertical sides called walls. The top 
and bottom of trapezoids are from the original input segments; the left and right sides 
come from the vertical extensions. However, if an endpoint was shared by two segments, 
then the face between them will look like a triangle.
 Also, note the top or bottom side of a trapezoid may have multiple vertices from where 
several vertical extensions landed on the same input segment.



 If these are going to be useful for a data structure, they’d better not be too big.
 Claim: Given an n-element set S of line segments, the resulting trapezoid map has at most 
6n + 4 vertices and 3n + 1 trapezoids.
 Proof:

 Each vertex shoots off two vertical extensions that create another two vertices in the 
final map. So 3 map vertices per segment vertex. There are 2n segment vertices, so 
these account for 6n total. The other 4 come from the bounding box.
 The left side of every trapezoid (except for the leftmost) is bounded by a vertex from S. 
Left endpoints of input segments can bound two trapezoids and right endpoints can 
bound 1. So a single segment has vertices on the left side of at most 3 segments for 
3n total. The extra 1 comes from the leftmost trapezoid bounded by the bounding 
box.

Constructing the Map

 We could use a straightforward plane sweep approach to construct the trapezoidal map.
 But instead, we’ll do randomized incremental construction like we did for linear 
programming.
 We’ll start with a single trapezoid, the bounding box. Then we’ll add segments one-by-
one. Let S_i be the first i segments, and let T_i be the trapezoidal map for S_i.
 When we add segment s_i to S_{i-1}, we figure out which trapezoid of T_{i-1} contains the 
left endpoint. We’ll discuss how to find that trapezoid later when we do point location.
 Next, we walk along the segment from left to right, taking note of which trapezoids we 
pass through.
 Finally, we fix up all the trapezoids we walked through by

 firing vertical extensions from the left and right endpoints for segment s_i
 trimming back each vertical extension of T_{i-1} crossed by s_i

 Doing these steps creates some new trapezoids that did not exist before.

 Let k_i be the number of newly created trapezoids. Ignoring the time taken to locate the 
left endpoint, this operation takes O(k_i) time. In short, we add 4 new segments and trim 
back k_i - 4 walls. We can use a suitable representation of the trapezoidal map like a DCEL 



to add segments or trim back walls in O(1) time each.

Analysis

 Now let’s analyze the time it takes to build the map.
 In the worst case, each additional segment we add could result in us trimming back 
Omega(n) walls, leading to an Omega(n^2) running time.
 However, by picking the order of the segments uniformly at random, it turns out we’ll trim 
back only O(1) walls per insertion in expectation.
 Later, we’ll show how to do all the point locations in O(n log n) total expected time. So in 
total, we’ll spend O(n log n) expected time building the trapezoidal decomposition.
 So, for now it suffices to count the total number of new trapezoids created with each 
insertion.
 Lemma: Let k_i be the number of new trapezoids created when segment i is added. E(k_i) 
= O(1).
 Like for linear programming, we’ll use backwards analysis to get the result.
 Proof:

 Let T_i be the trapezoidal map for S_i.
 Each segment of S_i had a 1/i probability of being added last.
 Let’s count how many trapezoids were created when we added s_i to S_{i-1}.
 Say trapezoid Delta in T_i depends on a segment s if adding s as the last segment 
would have caused Delta to be created.

 Let delta(Delta, s) = 1 if Delta depends on s and 0 otherwise.
 E(k_i)

 = 1/i sum_{s in S_i} (# of trapezoids that depend on s)
 = 1/i sum_{s in S_i} sum_{Delta in T_i} delta(Delta, s)

 It’s hard to get a handle on delta(Delta, s), because some segments intersect a lot of 
trapezoids and others intersect very few.
 So why don’t we just reverse the order of the summation?
 E(k_i) = 1/i sum_{Delta in T_i} {s in S_i} delta(Delta, s)
 Each trapezoid Delta is bound by four sides, the top and bottom are bound by distinct 



segments s for which delta(Delta, s)  = 1. The right and left side contain a single 
segment endpoint, for which delta(Delta, s) may be 1. Other segments don’t matter 
(and if multiple segments share an endpoint, then none of them could have been the 
one to introduce that endpoint if added last).
 So, sum_{s in S_i} delta(Delta, s) ≤ 4.
 E(k_i) ≤ 1/i sum_{Delta in T_i} 4 = 4/i | T_i| ≤ (4/i) * (3i + 1) = O(1).

 The total number of trapezoids added (and maybe destroyed) across the entire algorithm 
is n * O(1) = O(n) by linearity of expectation.

Point Location

 With the remaining time, let’s discuss the data structure for planar point location.
 We’ll still assume we’re given segments S = {s_1, …, s_n}.
 Assuming those segments form a planar subdivision, it’s natural to ask, given a query point 
q, which face it lies in.
 But instead we’ll ask more general vertical ray-shooting queries. Given q, which line 
segment s_i lies immediately below it?

 Earlier we were using rooted trees to build our data structures. For point location, we’ll 
instead use a directed acyclic graph. Meaning a directed graph with no directed cycles.
 There are two types of nodes:

 x-nodes contain an endpoint p from one of the segments. It has two outgoing edges/
children corresponding to points lying left or right of the vertical line through p.
 y-nodes contain a pointer to an input segment and it’s left and right outgoing edges/
children correspond to points above or below the segment’s line, respectively.

 To perform a query, you simply start at the unique source node / root and follow the 
correct child from each node until you hit a sink / leaf.
 So here’s where things come together. We can build the data structure so that each sink 
corresponds to a trapezoid in the trapezoidal map.



 And the construction of the data structure is done simultaneously with building the 
trapezoidal map. Every time you add a new segment, you turn the destroyed trapezoids’ 
leaves into internal nodes and append the new trapezoids as new leaves. Then you search 
the new structure when you insert the next point!
 Query time is proportional to the distance you must travel to reach a leaf.
 But because the actual structure depends upon the order in which we add segments, we 
can only talk about expected query times.
 Next time, we’ll discuss how to modify the data structure as we add new segments.
 Also, we’ll discuss how the expected time to query any point q, including segment 
endpoints, is O(log n). That implies the expected time for constructing a trapezoidal map is 
O(n log n) total.
 But let’s save that for Thursday so we have something to talk about.


