Line Segment Intersection

Given n line segments S in \(\mathbb{R}^2 \) (coordinates of endpoints).

Want to report all m intersections between pairs of segments.

Bentley & Ottmann ('79): \(O((n+m) \log n) \) time.

Plane sweep.
Will track event points as a vertical sweep line l goes from left to right.

Maintains:
1) partial solution of intersections left of l
2) sweep-line status describing how segments of S intersect l
3) event queue holding some
Future events including the next one

Events:
1) Left endpoints
2) Right endpoints
3) Intersections between segments

Can store only type 3 events between segments adjacent along sweep line.
Data Structures:
Event queue as priority queue
with operations:

\[r \leftarrow \text{insert}(e, x) \text{: insert event } e \text{ with } x \text{-coordinate/'priority'} x + \]

return reference \(r \) to its entry

\[\text{delete}(r) \text{: delete } r \text{'s entry} \]

\((e, x) \leftarrow \text{extract-min}() \text{: extract } e \text{ with priority } x \)
Sweep-line status as an ordered dictionary:

- \(r \leftarrow \text{insert}(s) \): insert segment \(s \)
- \(r \leftarrow \text{delete}(r) \)
- \(r' \leftarrow \text{predecessor}(r) \): return a ref \(r' \) to segment immediately above entry for \(r \) (or null if \(r \)'s segment is topmost)
- \(r' \leftarrow \text{successor}(r) \): as before but segment below
- \(r' \leftarrow \text{swap}(r) \): swap order of \(r \) and its successor. Return new ref for the segment of \(r \)
If one holds \(n \) entries, can use \(O(n) \) space \& \(O(\log n) \) time per operation, using e.g. min-heap \& balanced binary search tree.
The Algorithm

Line Segment Intersection Reporting

1. Insert all of the endpoints of the line segments of \(S \) into the event queue. The initial sweep-line status is empty.

2. While the event queue is nonempty, extract the next event in the queue. There are three cases, depending on the type of event:

 Left endpoint: (see Fig. 25(a))

 (a) Insert this line segment \(s \) into the sweep-line status, based on the \(y \)-coordinate of its left endpoint.

 (b) Let \(s^+ \) and \(s^- \) be the segments immediately above and below \(s \) on the sweep line. If there is an event associated with this pair, remove it from the event queue.

 (c) Test for an intersection between \(s \) and \(s^+ \), and if so, add it to the event queue. Do the same for \(s \) and \(s^- \).

 Right endpoint: (see Fig. 25(b))

 (a) Let \(s^+ \) and \(s^- \) be the segments immediately above and below \(s \) on the sweep line.

 (b) Delete segment \(s \) from the sweep-line status.

 (c) Test for an intersection between \(s^+ \) and \(s^- \) to the right of the sweep line, and if so, add the corresponding event to the event queue.

 Intersection: (see Fig. 25(c))

 (a) Let \(s^+ \) and \(s^- \) be the two segments involved (with \(s^+ \) above just prior to the intersection). Report this intersection.

 (b) Let \(s^{++} \) and \(s^{--} \) be the segments immediately above and below the intersection. Remove any event involving the pair \((s^+, s^{++})\) and the pair \((s^-, s^{--})\).

 (c) Swap \(s^+ \) and \(s^- \) in the sweep-line status (they must be adjacent to each other).

 (d) Test for an intersection between \(s^- \) and \(s^{++} \) to the right of the sweep line, and if so, add it to the event queue. Do the same for \(s^+ \) and \(s^{--} \).

![Fig. 25: Plane-sweep algorithm event processing.](image-url)
Analysis

Sweep line status has $\leq n$ segments so event queue has size $O(n)$

\Rightarrow events take $O(\log n)$ time each

$2n + m$ events processed, so

$O((n + m) \log n)$ time

There is an $O(n \log n + m)$ time alg. + an $\Omega(n \log n + m)$ lower bound.
Planar Subdivisions (simple)

A planar graph is a graph where you can map vertices to points in \mathbb{R}^2 and edges to line segments that are disjoint except at their endpoints, vertices.

![Diagram](image)
Embedding separates plane into regions called faces.

Planar subdivision is the combo of vertices, edges, and faces.

Represent with a doubly-connected edge list (DCEL).
Each edge is represented as a pair of twin directed half-edges. Each has an origin (tail) and destination (head).

Origin of one is destination of other.

Half-edges point to face on their left.
Formally, each vertex v has coordinates (v). Incidental Edge (v): an arbitrary half edge e with v as its origin.

For each face f:

- Outer Component (f): an arbitrary half-edge e s.t. f is on left of e.

- Inner Components (f): a list of half-edges, one per inner component $st. f$ is on left of e.
For each half-edge e:

- **Origin** (e)
- **Twin** (e)
- **Incident Face** (e): the one on the left
- **Next** (e): next half-edge along the incident face (e)
- **Prev** (e)

Can do pretty much any "local" thing in constant time per op.
such as edge next vertex leaving v in cow order is Twin (Prev(c)) can even subdivide a face on vertex in constant given next to prev. edges at the subdivision.

Can even subdivide a face on vertex in constant given next to prev. edges at the subdivision.