Polygon Triangulation

Dual graph: one vertex per triangle & edges between adjacent triangles' vertices.
Always a tree if you triangulate a simple polygon with no holes.
Two vertices are visible if the line segment between them stays interior to the polygon.

A diagonal is a line segment between visible vertices.

Any polygon with \(\geq 4 \) vertices has a pair of visible but non-adjacent vertices.

Their diagonal divides the polygon. Recursively partition polygon halves to get a triangulation.
Triangulations use $n-2$ triangles for n vertices.

Can be many triangulations.
Fasten Alg in Two Steps

1) Decompose polygon into monotone pieces in $O(n \log n)$ time [Lee, Preparata '77]

2) Triangulate each monotone polygon in $O(n)$ time [Garey et al., '78]
Formal definitions:

Polygonal curve: sequence of line segments joined end-to-end

Closed if first endpoint = last

Segments = edges

Endpoints = vertices

Simple if nonincident elements don't intersect

polyangular curve
simple
closed and simple
Closed + simple curves break plane into an interior + exterior.

Also called simple polygon.

A polygonal curve C is monotone with respect to L if every line orthogonal to L intersects C along one component.

Strictly monotone if intersections are 1 point.
Simple polygon P is monotone wrt l if we can split P's boundary into two curves monotone wrt l.

horizontally or \underline{x-monotone}

is l is the x-axis.

\begin{itemize}
 \item x-monotone polygon
 \item Splitting diagonals
 \item Monotone decomposition
\end{itemize}
Triangulating an \(x \)-monotone polygon:

Given \(x \)-monotone polygon with \(n \) vertices...

Vertices denoted \(v_1, \ldots, v_n \) in left-to-right order

(merge vertex chains for top & bottom of polygon to find sorted order in \(O(n) \) time)
Want to triangulate as much of left of line as we can...

A reflex vertex has interior angle $\geq \pi (180^\circ)$

Others are non-reflex.

Reflex chain: a sequence of reflex vertices along polygon boundary
Desired invariant: For $i \geq 2$, suppose we just processed v_i. The untriangulated region left of v_i has two monochain chains. One is a reflex chain from v_i to some vertex u. Other chain is a single edge from u to some vertex right of v_i.

Main invariant	Case 1	Case 2(a)	Case 2(b)
u | v_{i-1} | v_i | v_i | v_i | v_i | v_i |
u | v_{i-1} | v_i | v_{i-1} | v_i | v_i | v_i |

new choice for u
Algorithm + Proof:

For $\hat{w} = 2$,

For $\hat{w} > 2$ suppose invariant holds through $v_{\hat{w}-1}$.

Case 1 (v_s on opposite chain from $v_{\hat{w}}$): Add diagonals to all vertices $v_{\hat{w}-1}$ to (but not including) v_s. Now $u \leftarrow v_{\hat{w}-1}$.
Case 2 (\(v_i\) on same chain as \(v_{i-1}\))

2(a) (\(v_{i-1}\) is non-reflex):

At least one vertex before \(v_{j}\) is visible to \(v_i\). Add diagonal back to last vertex \(v_j\) of reflex chain visible to \(v_{i-1}\).

2(b) (\(v_{i-1}\) is reflex): Do nothing.

To implement: Store reflex chain in a stack & keep a flag saying if reflex chain is on top or bottom.
Analysis: Constant time per vertex we sweep + added diagonal so $O(n)$ overall.
Monotone Subdivision:

A polygon is not x-monotone iff it has a scan reflex vertex:

a reflex vertex where both incident edges go left or both go right

merge vertex

split vertex
Say sweep line is on
Split vertex \(v\)

\[u = \text{helper}(e_a) \]

\(e_a\): edge immediately above \(v\)

\(\text{helper}(e_a)\): rightmost vertex \(u\) left of sweep line s.t. vertical segment from \(e_a\) to \(u\) is entirely in polygon
Can always add a diagonal from v to $\text{helper}(e_a)$.

sweep line

e_a

e_b

$\text{helper}(e_a)$

sweep line

e_a

e_b

e_1

e_2

e_3

e_4

e_5

e_6

$\text{helper}(e_3)$

$\text{helper}(e_5)$

$\text{helper}(e_1)$