Given $S = \{s_1, \ldots, s_n\}$, let n line segments.

Segments could share an endpoint, but distinct endpoints have distinct x-coordinates.

1) Add a bounding box
2) Shoot "bullet path" up & down from each endpoint to first
They hit also called vertical extensions.

Decomposes plane into a trapezoidal map/decomposition.

Vertical sides are walls.
Top and bottom are line segments.
Lemma: \(\leq 6n + 4 \) vertices
\(\leq 3n + 1 \) trapezoids

Proof: 3 vertices per endpoint...
Any segment's endpoints lie on left wall of three trapezoids.
Leftmost trap has no endpoint on left wall.

Every trapezoid "depends on" \(\leq 4 \) segments.
Randomized incremental algorithm:

Start only with bounding box

\[S_{\tilde{u}} : = \{ s_1, \ldots, s_3 \} \]

\[T_{\tilde{u}} : \text{map for } S_{\tilde{u}} \]

Say we have \(T_{\tilde{u}-1} \). What happens when adding \(s_{\tilde{u}} \)?
1) Figure out which trapezoid contain lefthandpoint of s_u.
(can do this in $O(\log n)$ expected time)

2) Walk along s_u left to right. Observe which trapezoids you pass.

3) Add extensions from s_u & trim back walls we cross.
OLD time per new wall \Rightarrow
OLD time per new trapezoid.

So if k, new trapezoids
$O(k)$ time (ignoring point location)
Analysis: Permute segments before insertion to avoid \(\Theta(n^2) \) worst case time.

Lemma:
\[E[k_w] = O(1) \]
(over all permutations)

\(S_w \), \(O(n) \) time total outside point location.

Proof: Fix some subset \(S_w \) of first \(w \) segments but not the insertion order.
Say trapezoid \triangle depends on segment s if adding s last creates \triangle in last iteration.

Trapezoids that depend on s Segments that \triangle depends on

Let $\delta(\triangle, s) = 1$ if \triangle depends on s and 0 otherwise.
\[F \left(k, \omega \right) = \Xi \left(\text{prob. that } s \text{ is last} \right), \]
\[\Xi \left(s \in S \left(\Delta, \omega \right) \right) \]
\[= \frac{1}{2} \frac{1}{s \in S \left(\Delta, \omega \right)} \]
\[\Xi \left(s \in S \left(\Delta, \omega \right) \right) \]
\[\Xi \left(4 \right) \]
\[= \frac{1}{\Delta \epsilon} (3 \omega + 1) \cdot 4 \]
\[= 0 \left(1 \right) \]
Point Location

Given a planar subdivision preprocess to build a data structure.

Should take any query point \(q \) and quickly return \(q \)'s face.

We'll really do vertical segment ray-shooting queries. What lies immediately below \(q \)?
Use a rooted directed acyclic graph.

Each node has out degree 0: a leaf.

Has one source (in-degree 0) called the root.

1-1 correspondence between leaves and trapezoids.
Internal nodes: references on endpoint p of a segment. Children correspond to query q being left or right of p.

y-nodes: references a segment s. Is q above or below s?

Query: Start at root, Go down based on comparisons, until you hit a leaf.

Time prop.: To length of path.
Suppose we add segment s...

Remove leaves for now—gone trapezoids & replace with small trees.

Identify leaves pointing to a common trapezoid.
Analysis:

Space is $O(n)$ (in expectation)