
CS 6363.003 Final Exam

May 13, 2021

Please read the following instructions carefully before you begin.

• The exam has 6 problems, some of which have multiple parts. Please start the solution to
each problem on a new page.

• The exam is meant to take around 2 hours and 30 minutes, but you have some extra time
to prepare the solutions for submission to eLearning and work through any related technical
issues. You must finish uploading your solutions within 3 hours of beginning the exam or by
5:59am CST on Friday, May 14, whichever comes first. You may upload as many versions
of your solutions as you would like, but you can only submit them once. Your solutions will
be submitted automatically 3 hours after you begin the exam to prevent you from uploading
but forgetting to actually submit your solutions.

• If you cannot successfully upload your solutions to eLearning before the end of the 3 hour
time limit, email a copy to Kyle as soon as you possibly can.

• It is highly recommended that you take the exam between 9am and 5pm CDT on Thursday,
May 13th. Kyle will be actively watching for questions via email during this time. He will
also try to answer emailed questions at other times during the exam period, but he may be
slower to respond, especially if he is asleep! Feel free to ask for clarification on any of the
problems.

• Questions are not necessarily given in order of difficulty, so read through them all before you
begin writing.

• This exam is closed book. No notes or calculators are permitted.

• If asked to describe an algorithm, you should state your algorithm clearly (preferably with
pseudocode) and briefly explain its asymptotic running time in big-O notation in terms of the
input size. Each individual problem will specify whether or not you must justify correctness.

• It’s the end of the semester. Celebrate! (Throwing a party might be a bit much, though. See
Problem 6.)

1



CS 6363.003 Final Exam Spring 2021

1. (10 points) Suppose are you given an array A[1 .. n] of numbers. You are free to view and
compare the numbers like normal, but the only way you are allowed to modify A is by calling
a subroutine Reverse(i) that reverses the order of the elements in A[1 .. i]. For example, if
A initially equals ⟨5, 9, 12, 43, 2, 6363, 19⟩, then the call Reverse(4) would modify A so that
it then equals ⟨43,12,9,5, 2, 6363, 19⟩.

Describe and analyze an algorithm to sort the array A using O(n) Reverse operations.
Your analysis only needs to discuss the number of Reverse operation performed by the
algorithm. You do not need to justify correctness of your algorithm. [Hint: This is a problem
about recursion. Try to perform a small number of flips so you can recursively finish sorting
A.]

2. Consider the following solitaire game played on an n × n square grid. The player starts by
placing a token on any square of the grid. On each turn, the player moves the token either
one square to the right or one square down. The game ends when the player moves the token
off the edge of the board. Each square of the grid has a numerical value represented by a 2D
array A[1 .. n, 1 .. n] where A[i, j] is the value for the grid square that is ith from the top
and jth from the left (i.e., the top left grid square has value A[1, 1], the bottom left has value
A[n, 1], etc.). Each of these values may be positive, negative, or zero. The player
starts with a score of zero; whenever the token lands on a square, the player adds its value
to their score. The object of the game is to score as many points as possible.

For example, given the grid below, the player can score 8− 6 + 7− 3 + 4 = 10 points by
initially placing the token on the 8 in position (2, 3), and then moving down, down, right,
down, down. (This is not the best possible score for this grid of numbers.)

(a) (5 out of 10) For 1 ≤ i ≤ n and 1 ≤ j ≤ n, let BestScore(i, j) denote the maximum
score obtainable if the player starts by placing their token at position (i, j) (i.e., the
grid square of value A[i, j]). For simplicity, we’ll also define BestScore(n + 1, ·) and
BestScore(·, n+ 1) to both be 0.
Give a recursive definition for BestScore(i, j). You do not need to justify correctness of
your definition.

(b) (5 out of 10) Using your recursive definition from part (a) and dynamic pro-
gramming, describe and analyze an iterative algorithm that computes the maximum
possible score obtainable given the array of values A[1 .. n, 1 .. n]. Unless you gave
a recursive definition for which there is no efficient memoization method, you may as-
sume your solution to part (a) is correct. You do not need to justify correctness of your
algorithm.

2



CS 6363.003 Final Exam Spring 2021

3. (10 points) Suppose you are given a directed graph G = (V,E) with non-negative edge
weights w : E → R≥0 and two designated vertices s, t ∈ V . Describe and analyze an algorithm
that either returns the length of the shortest walk in G from s to t whose number of edges is
divisible by 3 or reports that no such walk exists. Recall, a walk is allowed to repeat vertices
and/or edges.

For example, given the graph shown below, with indicated vertices s and t, and with
all edges having weight 1, your algorithm should return 6, which is the length of the walk
s�w�y�x�s�w�t.

x y

ws

z

t

[Hint: Build a new graph G′ with O(V ) vertices and run a black-box shortest paths
algorithm on G′.]

4. (10 points) Exam scheduling is back! On the one hand, it’s easier than it was before,
because all exams are to be done through the eUnderstanding online course management
system using the MagicProctor student monitoring software. That means you no longer need
to worry about placing students in cramped rooms or picking distractable humans to watch
over them as they take their exams. On the other hand, it’s harder than it was before, because
all exams are to be done through the eUnderstanding online course management system which
will fail spectacularly if too many students try to take an exam at the same time.

To help ease the load on the eUnderstanding system, university administrators have decide
that every exam will be taken during one of t different time slots, but no more than 2,000
exams may be taken during any one time slot. Administrators also know how many exams
must be taken by each of the n students, and they have obtained a list of time slots during
which each student is available to take an exam. A student may not take two exams during
a single time slot.

Formally, the input to the problem is

• an integer array E[1 .. n] where E[i] is the number of exams to be taken by student i,
and

• a Boolean array A[1 .. n, 1 .. t] where A[i, j] = True if and only if student i is available
to take one of their exams during the jth time slot.

Describe and analyze an algorithm to determine whether there is a way to assign each
student i to E[i] distinct time slots so that 1) A[i, j] = True for each student i assigned to
each time slot j and 2) at most 2,000 students are assigned to each time slot j. You do not
need to justify correctness of your algorithm.

(Your algorithm does not need to return the actual assignments, assuming they exist,
but it will likely be clear to both of us how to compute the assignments if your algorithm is
correct.)

3



CS 6363.003 Final Exam Spring 2021

5. Suppose are you given an undirected graph G = (V,E). Recall, a subset of vertices S ⊆ V is
a vertex cover if every edge of G touches at least one vertex in S. The MinVertexCover
problem asks for the smallest vertex cover in G.

(a) (4 out of 10) Suppose the given graph G is a tree. Our goal is to design an efficient
dynamic programming algorithm for this case of MinVertexCover. Let r be an ar-
bitrary vertex of G, and imagine rooting G at r. Note that each vertex may have an
arbitrary number of children.
For any vertex v of G, let MinV CNo(v) denote the minimum size of any vertex cover
S of v’s subtree such that v /∈ S. Similarly, let MinV CY es(v) denote the minimum size
of any vertex cover S of v’s subtree such that v ∈ S.
Let w ↓ v denote “w is a child of v”. Fill in the blanks to complete the following recursive
definitions of both MinV CNo(v) and MinV CY es(v). Each blank is either an integer
(positive, negative, or zero) or a recursive call to one of MinV CNo or MinV CY es.

MinV CNo(v) = +
∑
w↓v

MinV CY es(v) = +
∑
w↓v

min {MinV CNo(w), }

(b) (3 out of 10) Briefly describe and analyze an algorithm to compute the size of the
smallest vertex cover in rooted tree G. For your description, it suffices to state what
order to solve each of the subproblems MinV CNo(v) and MinV CY es(v) and how to
compute the final return value of the algorithm using one or more of these subproblem
solutions. You do not need to justify correctness of your algorithm.

(c) (3 out of 10) As shown in class, the decision version of MinVertexCover (determine
whether there a vertex cover at size of most k) is NP-hard. Why doesn’t a polynomial
time solution for part (b) imply P = NP?

6. Throwing a good party is hard!

(a) (5 out of 10) Suppose you and a friend are hosting an end-of-semester party with n
guests (it can be held virtually if you’d prefer). For one of the activities, you need to
divide the guests into three groups. You don’t want to make things too awkward for
the guests, though, so you will only put two guests into a common group if they know
each other ahead of time. All the guests must be put in exactly one of the groups for
the activity to be a success.
Fortunately, your friend has prepared a document listing every pair of guests that already
know one-another. Unfortunately, figuring out the groups is still going to be a difficult
task. Argue that, given a document listing which pairs of the guests know one-another,
it is NP-hard to determine if there is a way to divide the guests into three groups as
described above. Describing and analyzing a reduction from a known NP-hard problem
is sufficient for full credit; you do not need to formally justify the correctness of your
reduction. [Hint: Try 3Color.]

4



CS 6363.003 Final Exam Spring 2021

(b) (5 out of 10) Your party needs decorations, so you decide to purchase a bunch of
balloons. Balloons come in a variety of shapes, but only two colors; green and orange.
To keep things interesting, you’ve decided to buy at most one balloon of each shape.
Unfortunately, your once-helpful friend is now feeling very picky about what kinds of
balloons you should purchase for the party, and they have provided a list of m require-
ments for your purchase. Each requirement lists one or more pairs of colors and shapes,
and for each requirement, you must purchase at least one balloon that matches one of
its color-shape pairs. For example, one of the many requirements might state “Buy a
green star balloon or an orange square balloon or an orange balloon shaped like Temoc’s
head or a green balloon shaped like a pony.”
Given that you want to buy at most one balloon of each shape, meeting all these re-
quirements may not be easy. Argue that, given a list of requirements for what kinds of
balloons to buy, it is NP-hard to determine if all the requirements can be met while still
buying at most one balloon of each shape. Describing and analyzing a reduction from a
known NP-hard problem is sufficient for full credit; you do not need to formally justify
the correctness of your reduction. [Hint: Try 3Sat.]

5


