CS 6363.003 Homework 3

Due Sunday April 4th on eLearning

March 20, 2021

Please answer the following 4 questions, some of which have multiple parts.

1. Suppose you are given a sequence of integers separated by + and - signs; for example:

$$
1+3-2-5+1-6+7
$$

You can change the value of this expression by adding parentheses in different places. For example:

$$
\begin{gathered}
1+3-2-5+1-6+7=-1 \\
(1+3-(2-5))+(1-6)+7=9 \\
(1+(3-2))-(5+1)-(6+7)=-17
\end{gathered}
$$

Describe and analyze a dynamic programming algorithm to compute, given a list of integers separated by + and - signs, the maximum possible value the expression can take by adding parentheses. Parentheses must be used only to group additions and subtractions; in particular, do not use them to create implicit multiplication as in $1+3(-2)(-5)+1-6+7=33$.

Clarification The unary - operators one would normally use to denote negative integers are not included in the collection of + and - signs separating the integers of the input sequence. For example, suppose one is given the following sequence of integers separated by + and - signs:

$$
3+(-2)-6-(-4)
$$

The (-2) and the (-4) are to be treated as a -2 and -4 , respectively, in any method of adding parentheses considered by the algorithm. In particular, there are exactly five distinct ways to group the + and - operations in this sequence using parentheses (some of which evaluate to the same result):

$$
\begin{aligned}
& 3+((-2)-(6-(-4)))=15 \\
& 3+(((-2)-6)-(-4))=-1 \\
& (3+(-2))-(6-(-4))=-9 \\
& (3+((-2)-6))-(-4)=-1 \\
& ((3+(-2))-6)-(-4)=-1
\end{aligned}
$$

2. Let T be a rooted binary tree with n vertices, and let $k \leq n$ be a positive integer. We would like to mark k vertices in T so that every vertex has a nearby marked ancestor. More formally, we define the clustering cost of any subset K of vertices as

$$
\operatorname{cost}(K)=\max _{v} \operatorname{cost}(\nu, K),
$$

where the maximum is taken over all vertices v in the tree, and $\operatorname{cost}(v, K)$ is the distance from v to its nearest ancestor in K :

$$
\operatorname{cost}(v, K)= \begin{cases}0 & \text { if } v \in K \\ \infty & \text { if } v \text { is the root of } T \text { and } v \notin K \\ 1+\operatorname{cost}(\operatorname{parent}(v)) & \text { otherwise }\end{cases}
$$

In particular, $\operatorname{cost}(K)=\infty$ if K excludes the root of T.

Figure 1. A subset of six vertices in a binary tree with clustering cost 3 . The other vertices are labeled with the distance to their nearest ancestor in the subset.
(a) Describe a dynamic programming algorithm to compute, given the tree T and an integer r, the size of the smallest subset of vertices whose clustering cost is at most r. For full credit, your algorithm should run in $O(n r)$ time.
(b) Describe an algorithm to compute, given the tree T and an integer k, the minimum clustering cost of any subset of k vertices in T. For full credit, your algorithm should run in $O\left(n^{2} \log n\right)$ time. [Hint: Use your algorithm for part (a) as a subroutine. You may assume your algorithm for part (a) is correct and runs in $O(n r)$ time.]
3. Describe and analyze an algorithm to compute an optimal ternary prefix-free code for a given array of frequencies $f[1 . . n]$. In other words, each character in the alphabet should be assigned a string of $0 \mathrm{~s}, 1 \mathrm{~s}$, and 2 s such that no code is a prefix of any other and the total length of the encoded message represented by the frequencies is as small as possible. Similar to what we saw in lecture, your output can be the representation of a ternary code tree. See Figure 4.4 of Erickson 4 and the preceding text for an example of how to build an optimal binary code tree.

For simplicity, you may consider the empty string to be a valid code word for the case $n=1$. Don't forget to prove that your algorithm is correct for all n.
4. There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins two galaxies and can be traversed in both directions. Also, each teleport-way e has an associated $\operatorname{cost} c(e)$ of dollars, where $c(e)$ is a positive integer. A teleport-way can be used multiple times, but the toll must be paid every time it is used.

Judy wants to travel from galaxy s to galaxy t, but teleportation is not very pleasant and she would like to minimize the number of times she needs to teleport. However, she wants the total cost to be a multiple of five dollars, because carrying small change is not pleasant either.

Describe and analyze an algorithm to compute the smallest number of times Judy needs to teleport to travel from galaxy s to galaxy t so that the total cost is a multiple of five dollars. To emphasize, Judy wants to minimize the number of times she teleports. Any total cost is fine as long as it is a multiple of five dollars.
[Hint: Build a graph that can model Judy's location and how much small change she has. Then, run an appropriate graph search algorithm that you've seen before.]

