
CS 6363.003 Homework 4

Due Sunday April 18th on eLearning

Please answer the following 4 questions, some of which have multiple parts.

1. Stick Clash is puzzle game for mobile devices by Doan Thanh where you control a stick
figure knight on a quest to save their captive friend. (The following description of the
game is largely based on reality but many details have been changed by Kyle.) Along their
way, the knight may recruit friendly soldiers who will join the knight’s party and help
them on their quest; however, the knight must sometimes battle with the enemy soldiers
before they can be convinced to befriend the knight and join the party.

For the purposes of this problem, we’ll consider the following variant of Stick Clash. A
single instance of the game takes place on a directed graph G = (V, E). The knight and
their initial party start their quest on a vertex s, and the knight’s captive friend waits at
another vertex t ̸= s. In each turn of the game, you may move the knight’s party from
their current vertex u to any vertex v where u�v ∈ E. You win the game as soon as the
knight’s party reaches vertex t. The strength of the knight’s party at any point in time is
represented by a real number x which is initially set to 20.

To make the game challenging, each vertex v /∈ {s, t} contains at most one of several
features. The effects of a feature take place only the first time (if ever) the knight’s party
reaches the vertex v. The possible features are as follows:

• A group of friendly soldiers of strength g (v): The soldiers immediately join the
knight’s party, and the party’s strength increases as x ← x + g(v).

• A group of enemy soldiers of strength b(v): The knight’s party fights the enemy
soldiers. If x ≤ b(v), the knight’s party loses the battle and you immediately lose
the game. Otherwise, the knight recruits the enemy soldiers and the party’s strength
increases as x ← x + b(v). For example, if x = 30 and b(v) = 20, then the party
wins the battle and their strength increases to 50= 30+ 20.

• A spike trap of harm h(v): The knight’s party takes damage and their strength
decreases as x ← x − h(v). If x ≤ 0 after the knight’s party takes damage, you
immediately lose the game.

• A blessed shield: The knight’s party is blessed by the shield and their strength doubles
as x ← 2 · x . The knight’s party may be blessed more than once during their quest if
they reach more than one vertex featuring shields.

• Some cursed bombs: The knight’s party suffers a horrible curse and their strength
halves as x ← x/2. The knight’s party may be cursed more than once during their
quest if they reach more than one vertex featuring bombs.

In general, Kyle does not think there is an efficient way to determine if a given instance of
the game can be won. However, certain assumptions on the input graph G may help.

1

CS 6363.003 Homework 4 (due April 18) Spring 2021

Describe and analyze an efficient algorithm to determine whether or not a given
instance of Stick Clash can be won, assuming the input graph G = (V, E) is a DAG. You may
assume comparisons and basic arithmetic operations, including division, can be done in
constant time each.

2. Throughout our lecture on minimum spanning trees, we assumed that no two edges in
the input graph have equal weights, a condition that implies the minimum spanning tree
is unique. In fact, the minimum spanning tree may be unique even if some pairs of edges
have equal weights.

(a) Describe an edge-weighted undirected graph that has a unique minimum spanning
tree, even though two edges have equal weights.

(b) Let G be an arbitrary edge-weighted undirected graph and F be a subgraph of some
minimum spanning tree of G. Let e be an arbitrary safe edge with respect to G and
F . Prove the following extension of Erickson’s Lemma 7.2:

Claim. There exists aminimum spanning tree T of G such that (F∪{e}) ⊆ T . Further,
every minimum spanning tree T ⊃ F contains e if there exists a component of F such
that e is the only minimum-weight edge leaving that component.

[Hint: Modify the proof of Lemma 7.2.]
(c) Describe and analyze an algorithm to determine whether or not a given edge-weight

connected undirected graph has a unique minimum spanning tree. [Hint: Modify
Kruskal’s algorithm.]

3. Suppose we are given a directed graph G = (V, E) with edge weights w : E → R and two
vertices s and t. You may assume G has no negative weight cycles.

(a) Describe and analyze an algorithm to find the shortest path from s to t when exactly
one edge in G has negative weight. [Hint: Modify Dijkstra’s algorithm. Or don’t.]

(b) Describe and analyze an algorithm to find the shortest path from s to t when exactly
k edges in G have negative weight. Any O(f (k)E log V) time algorithm where f
is a function of k is worth full credit, but an O(kE log V) time algorithm may be
faster and easier to analyze than those with worse dependency on k. [Hint: Modify
Bellman-Ford so it sometimes calls a variant of Dijkstra’s algorithm in the subgraph of
non-negative weight edges.]

4. Let G = (V, E) be a directed graph with edge weights w : E → R; edge weights could be
positive, negative, or zero, but you may assume there are no negative weight cycles.

(a) Let v ∈ V be an arbitrary vertex. Describe and analyze an algorithm that constructs
a directed graph G′ = (V \ {v}, E′) with weighted edges such that the shortest path
distance between any two vertices in G′ is equal to the shortest path distance between
the same two vertices in G. Your algorithm should run in O(V 2) time.

2

CS 6363.003 Homework 4 (due April 18) Spring 2021

(b) Now suppose we have already computed all shortest path distances in G′. Describe
and analyze an algorithm to compute the shortest path distances in the original
graph G from v to every other vertex, and from every other vertex to v, all in O(V 2)
time.

(c) Combine parts (a) and (b) to describe and analyze another all-pairs shortest paths
algorithm that runs in O(V 3) time. (The resulting algorithm is almost the same as
Floyd-Warshall.)

3

