
CS 6363.003.21S Lecture 10—March 2, 2021

Main topics are #dynamic_programming and #greedy_algorithms with
#example/maximum_independent_set_in_trees and #example/class_scheduling .

Dynamic Programming on Trees

 Last time, we finished by looking at the maximum independent set problem on trees.
 An independent set of a graph is a subset of vertices with no edges between them. The
maximum independent set problem asks for the largest independent set in a graph.
 Suppose we're given a rooted tree T with n vertices. Let's compute the size of the
maximum independent set in T.
 Again, we'll start with a backtracking approach. Like before, we can decide to do
something with the root (which in this case is given to us) and then recurse on the
subtrees.
 We’ll try to decide if the root belongs to the maximum independent set or not.
 Suppose we decide the root does not belong to the maximum independent set. We can
treat each subtree of the root as its own version of the problem, because they do not share
edges. We'll just ask for their maximum independent sets.
 And if we do decide to include the root, we can't include the children nodes, but we can
include all the grandchildren. We can ask the Recursion Fairy to find maximum
independent sets of the grandchildren's subtrees.
 So let MIS(v) denote the size of the maximum independent set in the subtree rooted at v.
Let w (downarrow) v mean “w is a child of v”. [First recursive call should be on w]

 We need to compute MIS(r) where r is the root of T.
 Subproblems: Each recursive subproblem takes a node.
 Memoization: The surprise here is that we don't make a new array. Instead, we'll use
the tree itself by storing each MIS(v) in a new field v.MIS.
 Dependencies: Each entry MIS(v) depends upon the children and grandchildren of v.
 Evaluation order: And you've likely seen a way to process children and grandchildren
before a node. We'll use a standard post-order traversal of the tree.
 Space and time: We're storing one number per vertex, so we use O(n) space. Time is
more subtle. The time taken to compute MIS(v) for each vertex varies depends on how
many children and grandchildren it has. So let's turn the analysis around. The
algorithm will spend time proportional to the total number of MIS lookups it performs.
Each vertex counts as a child at most once and as a grandchild at most once.

bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=dynamic_programming
bear://x-callback-url/open-tag?name=greedy_algorithms
bear://x-callback-url/open-tag?name=greedy_algorithms
bear://x-callback-url/open-tag?name=greedy_algorithms
bear://x-callback-url/open-tag?name=greedy_algorithms
bear://x-callback-url/open-tag?name=example/maximum_independent_set_in_trees
bear://x-callback-url/open-tag?name=example/maximum_independent_set_in_trees
bear://x-callback-url/open-tag?name=example/maximum_independent_set_in_trees
bear://x-callback-url/open-tag?name=example/maximum_independent_set_in_trees
bear://x-callback-url/open-tag?name=example/class_scheduling
bear://x-callback-url/open-tag?name=example/class_scheduling
bear://x-callback-url/open-tag?name=example/class_scheduling
bear://x-callback-url/open-tag?name=example/class_scheduling

Therefore, the algorithm will run in O(n) time total.
 And here's the algorithm. It's still recursive, but that's the easiest way to implement post-
order tree traversal. [Maybe do MIS(w) separately from using its value]

 There's another way we could have solved this problem so that we don't have to worry
about grandchildren.
 If we take the root into our independent set, we cannot include the roots of the children
subtrees. So we could ask for the maximum independent subsets of the children subtrees
that don't include their roots.
 Similarly, we could ask for maximum independent sets that must include roots.
 So let MISyes(v) denote the size of the maximum independent subset of the subtree
rooted at v that includes v.
 And MISno(v) is defined the same except we exclude v.
 Now we just want to know max{MISyes(r), MISno(r)}, and we can use the following
recurrence.

 Nearly all the details are the same as before, but we get a simpler dynamic programming
algorithm.

Class Scheduling

 And that’s all I want to say about dynamic programming for now. We’ll come back to a few
examples later in the semester as we talk about graph algorithms.
 But for now, I want to discuss another algorithm design paradigm that’s based on

recursion, but has a much higher risk/reward tradeoff than backtracking and dynamic
programming: greedy algorithms.
 As always, we’ll look at an example before discussing the overall framework or how to
argue your greedy algorithms actually work.
 Suppose you’re picking classes for next semester, and your number one goal is to
graduate as quickly as possible, so you want to take as many courses as possible. Don't
worry, these classes you're considering don't require any actual work; you just need to be
present have an opening in your schedule for the lecture. By some fluke all classes next
semester are scheduled on Mondays only, but you’re not allowed to take classes
scheduled for conflicting times.
 Formally, let S[1 .. n] be the start time of all n courses offered and F[1 .. n] be their end
times; so 0 ≤ S[i] < F[i] for all i.
 You want to find a maximal conflict-free schedule which is a maximum size subset X of {1, 2,
…, n} such that for each i,j in X either S[i] > F[j] or S[j] > F[i].
 Another way to think about it is you have this set of overlapping intervals representing the
time span for each course. Find the largest subset of intervals that don’t overlap.

 If we were designing a backtracking or dynamic programming algorithm, we might loop
over all the intervals, trying to guess one to include in our schedule. For each guess, we’d
recursively build the best schedule for the subset of intervals that don’t conflict.
 These subsets of classes do have some nice structure to them, so we don't need to
consider every subset as the input to a recursive subproblem. But even still, we’d at best
get an O(n^3) time dynamic programming algorithm using this strategy. There’s another
dynamic programming strategy that works better, but it still leads to an O(n^2) time
algorithm. Can we do even better?
 For this specific problem, yes. It turns out we can greedily choose the class that finishes
first and then recursively build a best schedule for the remaining classes.
 Let’s prove this greedy strategy works, and then we’ll look at an efficient implementation of
the algorithm.
 Lemma: At least one maximal conflict-free schedule includes the class that finishes first.

 Let f finish first, and consider any maximal conflict-free schedule X.
 If X includes f, we’re done.
 Otherwise, let g be the first class to finish in X.
 f finishes before g, so f does not conflict with any classes in X \ {g}.
 So remove g and replace it with f. The new schedule is just as large and it agrees with

our first choice.
 And just to be complete (and emphasize how we’re really doing recursion), let’s argue that
our overarching recursive strategy is correct.

 We know we can start with the class f that finishes first.
 Given that choice, we cannot take classes conflicting with f.
 But we can use any subset of non-conflicting classes that don't conflict with f. In
particular, we want a maximal set of such classes which the Recursion Fairy finds by
induction.

 We can write our strategy as an iterative algorithm by scanning through the class list
ordered by finishing time, and every time we see a new class that doesn’t conflict with the
last one we chose, taking it. This procedure returns the indices of the classes sorted by
finishing time.

 This figure shows the sorted set of intervals and what we're skipping past.
 For running time, we have the time it takes to sort which is O(n log n). The rest of the
algorithm is a simple O(n) time for loop, so the overall running time is O(n log n).

Greedy Algorithms and Exchange Arguments

 We just saw an example of a greedy algorithm.
 Not everybody describes it this way, but I like to think of it as “backtracking without the
backtracking”. As with standard backtracking algorithms, we need to make a single

decision that is as simple and self-contained as possible. Each possible choice leads to an
appropriate recursive call that handles the remaining decisions.
 The big difference, though, is that there is one “obviously” best choice that we can commit
to before doing any recursive calls or learning any consequences. So, we make that
choice, perform its recursive call, and return the overall result without checking if any of
the other choices would have been better.
 As shown earlier, you may not necessarily write describe your algorithm as a recursive
procedure, but I still think about it recursively during the design phase.
 Coming up with plausible sounding greedy strategies is easy. Finding one that is correct
and arguing for its correctness is much, much harder.
 Almost always, proving our first choice correct requires an exchange argument:

1. Start with some optimal solution (not one necessarily found by ours or any other
algorithm. Just the best choice over the set of solutions). If the optimal solution agrees
with our first choice, then great! Otherwise…

2. Do some kind of “exchange” in the optimal solution so it does use our first choice.
3. Argue that the exchange didn’t increase the cost of the solution, so our new solution

must also be optimal.
 Sometimes, the new solution ends up being even better than the original one, implying
that the hypothetical solution not using our first choice was actually a contradiction. We'll
see an example of that when we do minimum spanning tree algorithms sometime next
month.
 Of course, this strategy is still based on backtracking, so you should argue that your
recursive call is useful as well.
 And like a lot of things, this is not the only way to think about greedy algorithms. Erickson
suggests that exchange arguments should try to fix the “first” difference between greedy
and optimal solutions, and he offers an alternative proof for the class scheduling problem
to reflect this viewpoint.
 But I like to teach the backtracking way of thinking about it, because it keeps you all
thinking recursively and it solidifies the goal with the exchange argument.
 All that said, you almost never want to use a greedy algorithm if your goal is a provably
correct algorithm for a problem. It's extremely rare that the problem is structured so nicely
that you can do an exchange argument, so you’re better off just using dynamic
programming. I’ve had some freedom this semester in what examples I choose for
techniques like divide-and-conquer and dynamic programming. Correct greedy
algorithms are so rare that I’ve already used one of the two examples that appear in pretty
much every introductory lecture on the topic. Thursday, we’ll go over the other
introductory example. By the end of the semester, we’ll have seen pretty much every
example that most computer scientists ever learn.

