
CS 6363.003.21S Lecture 12—March 9, 2021

Main topics are #graph_basics , including #breadth-first_search  and 
#depth-first_search .

Graph Review

 We’re about to begin a few weeks on graphs algorithms, so let’s begin with some review 
on definitions and graph traversals. I’ll stay light on proofs today, because you likely saw 
this stuff in your discrete structures courses.
 A graph G = (V, E) is a set of vertices or nodes V and edges E. If G is undirected, each edge 
is a set of vertices, but I’ll write uv. If G is directed, each edge is an ordered pair, but I’ll 
write u  v.
 This definition does not allow for loops or parallel edges, meaning we must work with 
simple graphs. Most of the algorithms we talk about extend to multigraph with almost no 
change.
 If uv is an edge, then u is a neighbor of v and vice versa.
 The degree of a vertex is the number of neighbors. If u  v is a directed edge, then u is a 
predecessor of v and v is a successor of u.
  The in-degree of a vertex is the number of predecessors and the out-degree is the 
number of successors.
 [start skipping here]
 A graph G’ = (V’, E’) is a subgraph of G = (V, E) if V’ subseteq V and E’ subseteq E.
 A walk is a sequence of edges where each successive pair of edges share a vertex. A path 
is a walk that visits each vertex at most once.
 An undirected graph is connected if there is a walk between every pair of vertices. The 
components of a graph are its maximal connected subgraphs.
 A cycle is a walk that only repeats its first / last vertex and has at least one edge. A graph is 
acyclic or a forest if no subgraph is a cycle. A tree is a connected acyclic graph. A spanning 
tree of G is a subgraph of G that contains every vertex and is a tree. A spanning forest has 
one spanning tree per component of G.
 A directed graph is strongly connected if there is a directed walk between every ordered 
pair of vertices. A directed graph is acyclic if there is no directed cycle. I might say DAG to 
mean directed acyclic graph.

bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=depth-first_search
bear://x-callback-url/open-tag?name=depth-first_search
bear://x-callback-url/open-tag?name=depth-first_search
bear://x-callback-url/open-tag?name=depth-first_search


 [end skipping]
 When describing graph algorithms, we may use V or E to represent the number of vertices 
or edges in the input graph, i.e., this algorithm runs in time O(V + E). Yes, this is weird, and 
I personally prefer using n and m outside the classroom. For some reason, both textbooks 
do this V and E thing, and writing |E| is tedious, so I guess we’ll go with the flow.

Computer Representations

 So how do computers represent graphs?
 The two most common methods are the adjacency matrix and the adjacency list. The first 
lets you look up the existence of edges in constant time, but it uses Theta(V^2) space.

 [skip during lecture] The adjacency matrix of G = (V, E) is a V x V matrix where A[i, j] = 1 if 
(i, j) \in E and 0 otherwise. If the graph is undirected, then A[i, j] = A[j, i] in every case. For 
simple graphs, meaning no loops, every diagonal entry A[i, i] = 0.

 These use Theta(V^2) space, so it’s only space-efficient for dense graphs.
 But, we can decide in Theta(1) time if two vertices are adjacent.
 Listing all neighbors of a vertex means searching its whole row or column in Theta(V) 
time.

 But generally, we’ll use the adjacency list of G which is an array with one linked-list per 
vertex v, listing all of its neighbors. If G is directed, we store only successors of v. So in an 
undirected graph, each edge uv appears in the lists for both u and v. Directed edge u  v 
appears exactly once and in u’s list.

 The space used is only Theta(V + E) so its space-efficient even for sparse graphs.
 Listing the neighbors of vertex u takes O(1 + deg(u)) time since we only need to scan 
v’s list.
 But, we do need O(1 + deg(u)) time to decide if edge u  v exists or O(1 + 



min{deg(u), deg(v)} time to find edge uv if the graph is undirected. In most graph 
algorithms, we never need to ask if an edge exists, only list edges coming out of 
certain vertices of interest.

BFS

 A common operation on graphs is to traverse or search its vertices and edges. In particular, 
we may ask if v is reachable from s, meaning there is a (directed) path from s to v.
 Probably the simplest traversal algorithm is the breadth-first search or BFS. It works by 
trying to visit vertices in order of their distance from s. To avoid repeating work, we mark 
vertices we’ve seen. Initially all vertices are unmarked.
 Here’s one way to implement it based on Erickson. The CLRS implementation is somewhat 
different but still visits the same vertices.
 BFS(s):

 put (emptyset, s) in a queue
 while the queue is not empty

 take (p, v) from the queue
 if v is unmarked

 mark v
 parent(v)  p
 for each edge vw

 put (v, w) into the queue
 Using induction, we can prove several facts about BFS:

1.  It marks every vertex reachable from s exactly once.
2.  The set of pairs (v, parent(v)) form a spanning tree on the component of G containing 

s, i.e., the set of vertices reachable from s.
3.  The paths in this spanning tree are shortest paths from s to their endpoints, where 

every edge has length 1.
 I want to focus a bit more on the analysis of this algorithm, though.
 That for loop is executed once per marked vertex, so at most V times.
 Therefore, each edge vw is put into the bag at most twice, once as (v, w) and once as (w, v). 
So we enqueue at most 2E times.
 And we can’t take more out of the queue than we put in, so we dequeue at most 2E + 1 
times.
 Queue operations take O(1) time each, so the total running time is O(V + E).
 If you’re working with a directed graph, then you loop over edges leaving v and you get a 
spanning tree over vertices specifically reachable from s.
 So remember, if you need to compute shortest paths on an unweighted graph, USE BFS; 
IT’S LINEAR TIME. Don’t use Dijkstra’s algorithm. It’s slower in that case.



 Finally, Erickson remarks that this is just a special case of a generic graph search algorithm 
he calls WhateverFirstSearch. By replacing the queue with other data structures, you get 
other search algorithms, including Prim’s algorithm for minimum spanning times , Dijkstra’s 
algorithm for shortest paths, and a non-recursive version of depth-first search.  We’ll cover 
all of those algorithms in the next two weeks, starting with depth-first search today and 
some applications next Tuesday.

DFS

 Now, having said that about WhateverFirstSearch, probably the most common way to 
implement depth-first search or DFS it is to use recursion.

 The PreVisit and PostVisit are placeholder functions for doing whatever extra work you 
want to do before and after fully processing a node.
 We can extend this algorithm to mark all vertices in the graph by using a wrapper function.

 Like before, PreProcess lets us do a bit of work before working with G.
 We still mark each vertex once and therefore handle each directed edge once, so the 
running time is O(V + E).

Preorder and Postorder

 The applications for DFS all come from the useful order in which it marks vertices. 
 To see that, let’s pass around a clock variable that increments every time we start or stop 
visiting a vertex.



 We assign v.pre just after pushing v onto the recursion stack and assign v.post just before 
popping it from the stack.

 v.pre is often called the starting time of v.
 v.post is often called the finishing time of v.
 and [v.pre, v.post] is called the active interval of v.

 So, because stack timelines are always disjoint or nested, [u.pre, u.post] and [v.pre, v.post] 
are either disjoint or nested. In fact, [u.pre, u.post] contains [v.pre, v.post] if and only if 
DFS(v) is called during the execution of DFS(u). 
 And because we only make recursive calls when there are edges, there must be a directed 
path from u to v in this case. In particular, the set of vertices on the recursion stack form a 
directed path in G.
 Here’s an example of a depth-first search.

 Similar to rooted trees, we can use the v.pre labels to get a preordering of the vertices 
“abfgchdlokpeinjm” in that order, and the v.post labels to get a postordering 
“dkoplhcgfbamjnie” in that order.

Classifying Vertices and Edges
 So let’s say we’re in the middle of running a depth-first search. We can learn a lot about the 
structure of the graph by using this clock variable.
 Eventually, the algorithm will populate v.pre and v.post for every vertex v.
 But suppose we’re midway through running DFS. Fix a vertex v and its eventual pre and 
post values.  But consider the clock at the moment we pause the algorithm. v is

 new if clock < v.pre (DFS(v) has not yet been called)
 active if v.pre ≤ clock < v.post (DFS(v) has been called but not yet returned)
 finished if v.post ≤ clock (DFS(v) has returned)



 Being active corresponds to a vertex being on the recursion stack. That means the active 
vertices form a directed path in G.
 In turn, using these definitions, we can partition the edges into four classes depending on 
how they interact with the depth-first search forest. Unlike vertices, these classes apply to 
an entire run of DFS, not a particular moment in time during the run. Consider edge u  v 
and the moment when DFS(u) begins.

 If v is new, then either we call DFS(v) directly when we iterate over u  v, or another 
intermediate recursive call will mark v first. Either way, u.pre < v.pre < v.post < u.post.

 If DFS(u) calls DFS(v) directly, u  v is called a tree edge.
 Otherwise, u  v is called a forward edge.

 If v is active, then v is on the stack, so v.pre < u.pre < u.post < v.post. G has a directed 
path from v to u.

 u  v is called a back edge.
 If v is finished, then v.post < u.pre.

 u  v is called a cross edge.
 Note that u.post < v.pre cannot happen, because we would add v to the stack before 
finishing with u.

 Again, this classification of edges depends upon the specific depth-first search tree we 
get, which depends upon the order in which we iterate over vertices and edges.

 Next time, we look at some applications of depth-first search, including a return to our old 
friend dynamic programming.


