
CS 6363.003.21S Lecture 13—March 23, 2021

Main topics are #graph_basics , including #breadth-first_search  and 
#depth-first_search .

Depth-first search

 Today, we’re going to study properties and applications of depth-first search. Probably the 
most common way to implement depth-first search or DFS it is to use recursion.

 The PreVisit and PostVisit are placeholder functions for doing whatever extra work you 
want to do before and after fully processing a node.
 We can extend this algorithm to mark all vertices in the graph by using a wrapper function.

 Like before, PreProcess lets us do a bit of work before working with G.
 We still mark each vertex once and therefore handle each directed edge once, so the 
running time is O(V + E).

Preorder and Postorder

 The applications for DFS all come from the useful order in which it marks vertices. 
 To see that, let’s pass around a clock variable that increments every time we start or stop 
visiting a vertex.

bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=graph_basics
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=breadth-first_search
bear://x-callback-url/open-tag?name=depth-first_search
bear://x-callback-url/open-tag?name=depth-first_search
bear://x-callback-url/open-tag?name=depth-first_search
bear://x-callback-url/open-tag?name=depth-first_search


 We assign v.pre just after pushing v onto the recursion stack and assign v.post just before 
popping it from the stack.

 v.pre is often called the starting time of v.
 v.post is often called the finishing time of v.
 and [v.pre, v.post] is called the active interval of v.

 So, because stack timelines are always disjoint or nested, [u.pre, u.post] and [v.pre, v.post] 
are either disjoint or nested. In fact, [u.pre, u.post] contains [v.pre, v.post] if and only if 
DFS(v) is called during the execution of DFS(u). 
 And because we only make recursive calls when there are edges, there must be a directed 
path from u to v in this case. In particular, the set of vertices on the recursion stack form a 
directed path in G.
 Here’s an example of a depth-first search.

 Similar to rooted trees, we can use the v.pre labels to get a preordering of the vertices 
“abfgchdlokpeinjm” in that order, and the v.post labels to get a postordering 
“dkoplhcgfbamjnie” in that order.

Classifying Vertices and Edges
 So let’s say we’re in the middle of running a depth-first search. We can learn a lot about the 
structure of the graph by using this clock variable.
 Eventually, the algorithm will populate v.pre and v.post for every vertex v.
 But suppose we’re midway through running DFS. Fix a vertex v and its eventual pre and 
post values.  But consider the clock at the moment we pause the algorithm. v is

 new if clock < v.pre (DFS(v) has not yet been called)
 active if v.pre ≤ clock < v.post (DFS(v) has been called but not yet returned)
 finished if v.post ≤ clock (DFS(v) has returned)



 Being active corresponds to a vertex being on the recursion stack. That means the active 
vertices form a directed path in G.
 In turn, using these definitions, we can partition the edges into four classes depending on 
how they interact with the final depth-first search forest. Unlike vertices, these classes apply 
to an entire run of DFS, not a particular moment in time during the run. Consider edge u  
v and the moment when DFS(u) begins.

 If v is new, then either we call DFS(v) directly when we iterate over u  v, or another 
intermediate recursive call will mark v first. Either way, u.pre < v.pre < v.post < u.post.

 If DFS(u) calls DFS(v) directly, u  v is called a tree edge.
 Otherwise, u  v is called a forward edge.

 If v is active, then v is on the stack, so v.pre < u.pre < u.post < v.post. G has a directed 
path from v to u.

 u  v is called a back edge.
 If v is finished, then v.post < u.pre.

 u  v is called a cross edge.
 Note that u.post < v.pre cannot happen, because we would add v to the stack before 
finishing with u.

 Again, this classification of edges depends upon the specific depth-first search tree we 
get, which depends upon the order in which we iterate over vertices and edges.

Detecting Cycles

 So why did we go through defining all these things? Well, we now have the tools to solve 
some real problems. And the solutions are surprisingly easy.
 First, let’s suppose we’re given a directed graph G. Are there any directed cycles in G?
 Lemma: Directed graph G has a cycle if and only if DFSAll(G) yields a back edge.

 Suppose there is a back edge u  v. Then G has a directed path from v  u. That path 
plus u  v is a cycle.
 Suppose there is a cycle. Let v be the first vertex of the cycle visited by DFSAll, and let 
u  v be the predecessor of v in the cycle.
 I claim that DFS(v) will eventually call DFS(u).



 The call to DFS(v) will reach all vertices reachable from v that don’t require going 
through something already marked. In particular, the cycle itself is such a path to u 
since v is the first marked vertex.
 But then when DFS(u) is called, we’ll see u  v is a back edge.

 Edge u  v is a back edge if and only if u.post < v.post. So we can compute a post 
ordering in O(V + E) time and check if that’s the case for any edge u  v. If not, there are 
no directed cycles. It’s only O(E) more things to do after DFSAll, so still O(V + E) time total.

Topological Sort

 But why do we care about directed cycles? Directed graphs without directed cycles are 
called directed acyclic graphs or DAGs.
 Every DAG has a topological ordering of its vertices. Formally, its a total order where u < v 
if there is an edge u  v. Less formally, we want to draw the vertices on a line going left to 
right so there are no edges going from right to left.
 The normal motivation for finding topological orderings is to decide what order to do 
certain operations. Imagine we have a Makefile with several targets. We could build a 
graph with targets as vertices and edges going from each target to those that depend on 
it being built first. You need to compile everything in a topological order.
 Topological orderings don’t exist if there are directed cycles: in any ordering the rightmost 
vertex of a cycle would have an edge going back to the left.
 However, if there are no directed cycles, there are no back edges after a DFSAll, meaning 
u.post > v.post for every edge u  v.
 So, going by decreasing u.post,  or reverse post ordering, you get a topological ordering!

 In particular, every directed acyclic graph has a topological ordering.
 If we want to put the vertices in a separate data structure in order, we can add them in 
reverse postorder by having a clock tick down from V to 1.



 Again, it’s just DFSAll with some extra stuff attached, so O(V + E) time.

Dynamic Programming on DAGs

 But now, let’s back up a bit. Earlier in the semester we were discussing dynamic 
programming.
 Suppose we have a recurrence to evaluate for some dynamic programming algorithm.
 The dependency graph has one vertex per subproblem and an edge x  y for every 
subproblem y that x depends upon.
 The dependency graph must be acyclic or the naive recursive algorithm would never halt.
 When you solve the recurrence using basic memoization without rewriting it as an iterative 
algorithm, you’re really doing a depth-first search of the dependency graph, and you’re 
computing the solutions to the subproblems in postorder.
 The final iterative dynamic programming algorithm you design and analyze is really you 
evaluating all the subproblems in reverse topological order (since edges point to 
dependencies, not the other way around).
 That said, we don’t literally do a DFS of the dependency graph. First, the graph is usually 
represented implicitly. We don’t record all the vertices and edges. Instead we just 
enumerate over each vertex’s subproblems. It’s essentially the same as if we were going 
over the adjacency list of a vertex, but technically it is different.
 Also, we usually have a good idea of the structure of the dependency graph before we 
start running the algorithm. For example, edit distance uses a regular grid dependency 
graph with edges between horizontal, vertical, or diagonal neighbors. This structure 
means we can usually hard-wire the reverse topological order into our final algorithms as a 
collection of nested loops.
 But this observation that dynamic programming and depth-first search are the same thing 
can be very useful when dealing with certain problems that are actually defined on 
directed acyclic graphs.
 The longest path problem takes a directed graph G = (V, E) with edge weights ell : E  R 
and two vertices s and t. We want the length of the longest path from s to t that does not 



repeat any vertices.
 The problem is hard to solve in general graphs, but we can solve it quickly if G is a DAG.
 We’ll do so by answer the more general question of longest path to t from every vertex.
 Let LLP(v) be the Length of the Longest Path from v to t or -infinity if no such path exists. If v 
= t then LLP(v) = 0. Otherwise, once we choose an edge from which to leave v, the total 
length of the path will be the length of the edge plus the length of the path from v’s 
successor. The path from v’s successor can’t accidentally go back to v since G is a DAG, so

 Here, a max over nothing gets -infinity because v must not have any outgoing edges.
 The dependency graph for this recurrence is the input graph G. So evaluating the function 
using basic memoization is literally performing a depth-first search on G. It takes O(V + E) 
time.
 If we want to write it as a more standard dynamic programming algorithm, we can just fill 
in each LLP value in postorder.

 Still looking at each edge once, so O(V + E) time.
 If you’d prefer traditional shortest paths in O(V + E) time, use a min instead and let +infinity 
be the fail value.


