
CS 6363.003.21S Lecture 15—March 30, 2021

Main topics are #single_source_shortest_paths .

Single Source Shortest Paths

 For the next problem, let’s say you’re given a directed graph G = (V, E, w) where w : E  R is 
another weight function. The shortest path between two vertices s and t is the s,t-path P 
minimizing w(P) = sum_{u  v in P} w(u  v). The minimum value is the distance from s to t.
 Most algorithms for shortest paths actually end up solving the more general single source 
shortest paths (SSSP) problem: find the shortest path from s to every vertex in G.
 A subpath of a shortest path is itself a shortest path, and we can always pick our shortest 
paths consistently so they form a spanning tree, rooted at s. Here, we can redirect the 
dotted path from a to d to go through the solid path from a to d instead so we indeed get 
that tree.

 We’ll focus on computing a shortest path tree from s and the distances from s to every 
other vertex.
 Please please please don’t confuse minimum spanning trees with shortest path trees. 
They’re both optimal trees but minimum spanning trees are for undirected graphs while 
shortest path algorithms are best described for directed graphs and the trees themselves 
are directed away from a root. If edge weights are distinct, there is exactly one minimum 
spanning tree, but there is a different shortest path tree for every choice of source vertex s.
 If you want to do shortest paths in a non-negatively weighted undirected graph, replace 
every edge uv with a pair of edges u  v and v  u of the same weight. Even here, you 
may get different trees. In fact, every SSSP tree of an undirected graph may use a different 
set of edges from the minimum spanning tree. Below, we have a minimum spanning tree 
to the left and a SSSP tree to the right.

 Nothing about our problem definition forbids negative weights. If you think of positive 
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weights as a cost for following certain edges, negative weight would represent some 
benefit. Maybe you’re trying to plan a trip and there’s a few particularly pretty roads you’d 
like to drive down.
 However, we run into trouble if there’s a directed cycle with negative total weight.  The 
algorithms we’re going to talk about today and Thursday are really working toward 
computing a shortest walk from s to each other vertex. If there are negative weight cycles, 
a “shortest” walk would go around and around an infinite number of times before reaching 
its destination. In other words, a shortest walk does not exist!

 If there are no negative weight cycles, though, we can compute shortest walks that just 
happen to be paths, because there is no reason to repeat a vertex if every cycle from that 
vertex to itself has non-negative weight.
 The trick of turning an undirected graph into a directed one only works if there are non-
negative weights, because otherwise you’d create tiny negative weight cycles with two 
edges each. You can do shortest paths in undirected graphs with negative weights, but the 
algorithms for that rely on computing something called a minimum cost matching, 
something well beyond the scope for this course.

The Only SSSP Algorithm

 Like minimum spanning trees, there’s really only one shortest path tree algorithm. It was 
independently discovered by Lester Ford, George Dantzig, and George Minty around the 
same time. 
 The idea is that we’ll keep an educated guess on the distance and shortest path to each 
vertex. The way I like to think about it is that we’re pessimistically assuming the distance to 
each vertex is absolutely huge until prove otherwise. The proofs otherwise eventually 
become the incoming edges on the shortest path to each vertex.
 To that ends, we’ll define two mutable variables for each vertex v:

 dist(v) is our pessimistic guess on the distance to v. dist(v) will always be at least the 
actually distance to v. Initially, dist(s)  0 and dist(v)  infinity for all v ≠ s.
 pred(v) is the predecessor of v in a tentative shortest s to v walk, or the “proof” that our 
previous guess on the distance was too high. Initially, pred(v)  Null for every vertex v.

 All variants of the shortest path algorithm begin by running the following initialization 
procedure. InitSSSP(s) takes the shortest path source s.



 Call an edge u  v tense if dist(u) + w(u  v) < dist(v).
 Edge u  v being tense is our proof that dist(v) is too high.
 Therefore, we relax tense edge u  v by lowering dist(v) just enough to remove the tension 
from u  v.

 The only SSSP algorithm repeatedly finds some tense edge and relaxes it.

 I’m going to claim that this algorithm does eventually terminate if there are no negative 
cycles. After it terminates, each value dist(v) is the shortest path distance from s to v, and 
following the sequence of pred pointers from any vertex v gives you the reversal of the 
shortest path to v. If dist(v) = infinity after the algorithm terminates, then v wasn’t reachable 
from s to begin with.
 One surprising thing is that the algorithm never terminates if there is even one negative 
cycle reachable from s. Intuitively, no dist(v) is low enough for any v on that cycle, and we’ll 
keep finding tense edges on the cycle and relaxing them forever. I’ll give a more formal 
argument later.
 All of the shortest paths algorithms are just variations on how you pick which edge to relax 
in each iteration, and you pick your algorithm based on what kinds of edge weights or 
structures are present in your graph. The running time analyses for these algorithms are 
themselves variants on how to prove correctness of FordSSSP. I don’t want to say the same 
things to you more often than I need to, so I’ll skip the proof of correctness for generic 
FordSSSP.
 But I will prove one thing that’s necessary to know for all of the variants: at all times, for any 
vertex v, then dist(v) is either infinity or the length of some walk from s to v.

 We can use induction on the number of relaxations.
 If the last change to to dist(v) was setting dist(v)  dist(u) + w(u  v) then dist(u) at that 
moment was the length of some s to u walk.
 Just add u  v to that walk to make an s to v walk of length dist(u) + w(u  v) = dist(v).

 The rest of the argument for FordSSSP’s correctness then follows this intuition: as long as 



we haven’t found all the shortest path distances, there exists a vertex v to which we can 
find a shorter walk by relaxing an edge into v.
 One more thing: As I present different variants of the shortest paths algorithm, I’m going 
to focus on running time analysis and proving the dist values are successfully set to the 
actual distances to each vertex. In all cases, you can use a similar induction proof to the 
one we just did to show that the final walk of length dist(v) into each vertex uses the pred 
edge of each vertex on the walk.
 Alright, let’s finally get to some of those variants.

When Nothing Else is Appropriate: Bellman-Ford

 The variant we’re going to start with actually works for any graph that doesn’t have a 
negative cycle. I’d like to start with it, because I think its proof of correctness does a good 
job of demonstrating the main principles behind all variants of the generic algorithm.
 As is often this case, this algorithm was proposed by many people independently, but 
everybody calls it Bellman-Ford now.
 We attempt to relax all the edges and then recurse.

 It’s completely mystifying that this algorithm can be efficient. After all, we’re not doing 
anything clever.
 But it turns out the analysis is actually more straightforward than most of the other variants 
of FordSSSP.
 Let dist_≤i(v) denote the length of the shortest walk in G from s to v with at most i edges. 
So dist≤0(s) = 0 and dist≤0(v) = infinity for all v ≠ s.
 Lemma: For every vertex v and non-negative integer i, after i iterations we have dist(v) ≤ 
dist≤i(v).
 Proof:

 If i = 0, the lemma is trivially true.
 Let W be a shortest walk from s to v with at most i edges. By definition, W has length 
dist≤i(v).
 If W has no edges, it goes from s to s, meaning v = s and dist≤i(v) = 0. dist(s)  0 in 
InitSSSP and dist(s) never increases, so dist(s) ≤ 0.
 Otherwise, let u  v be the last edge of W. After i - 1 iterations, dist(u) ≤ dist≤{i-1}(u).
 In the ith iteration, we consider edge u  v. Either dist(v) ≤ dist(u) + w(u  v) already or 



we set dist(v)  dist(u) + w(u  v).
 Either way, dist(v)

 ≤ dist(u) + w(u  v)
 ≤ dist{≤i-1}(u) + w(u  v)
 = dist≤i(v).

 And dist(v) can only decrease further by the time the loop ends.
 This lemma is true even if there are negative length cycles!
 Because dist(v) is always the length of some walk, it is always at least the shortest path 
distance.
 If there are no negative cycles, the shortest walk from s to any v has at most V - 1 edges, so 
dist(v) must be the true shortest path distance by the end of V - 1 iterations.
 Each iteration takes O(E) time, so the algorithm takes O(VE) time if there are no negative 
length cycles.
 But what if there is a negative cycle C reachable from s? As we discussed earlier, there is 
always a walk W to any vertex w on C where the length of W is less than dist(w). If we travel 
W from s, we’ll have to hit some first vertex v (maybe w itself) where dist(v) is larger than 
the length of that prefix of W to v. The previous vertex u didn’t have that problem, so 
dist(u) + w(u  v) < dist(v), implying u  v is tense.
 Luckily, knowing there is at least one tense edge means we can modify the algorithm 
slightly to “fail gracefully” if there exists a negative cycle reachable from s.

 This version runs in O(VE) time even if there are negative cycles.
 Next time, we’ll discuss some faster variants of FordSSSP for when either the edge weights 
or the graph structure have some nice properties.


