
CS 6363.003.21S Lecture 18—April 8, 2021

Main topics are #maximum_flow  and #minimum_cut .

Shipment Rates and Bottlenecks

 Now, let’s get started on one last subject in graph algorithms, and the one I think is the 
most interesting.
 “In the mid-1950s, U. S. Air Force researcher Theodore E. Harris and retired U. S. Army 
general Frank S. Ross wrote a classified report studying the rail network that linked the 
Soviet Union to its satellite countries in Eastern Europe. The network was modeled as a 
graph with vertices, representing geographic regions, and edges, representing links 
between those regions in the rail network. Each edge was given a weight, representing the 
rate at which material could be shipped from one region to the next. Essentially by trial 
and error, they determined both the maximum amount of stuff that could be moved from 
Russia into Europe, as well as the cheapest way to disrupt the network by removing links 
(or in less abstract terms, blowing up train tracks), which they called “the bottleneck”. Their 
report, which included the drawing of the network [below], was only declassified in 1999. ” 
— Erickson

 We’re going to talk about how not to do these two things by trial and error.
 Specifically, we’re going to discuss two problems known as the maximum flow problem, 
and the minimum cut problem.
 For both problems, we’re given a directed graph G = (V, E) with special vertices s, the 
source, and t, the target or sink.
 The maximum flow measures how much material can be transported from s to t.
 The minimum cut measures how much damage we need to do to separate s from t.
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Maximum Flow

 An (s, t)-flow is a way of assigning values to the edges that models how material flows 
through a network. You could also imagine the network as a series of tubes or pipes. We’re 
measuring how water, or trains, moves through them.
 Formally, its a function f : E  R≥0 that satisfies the conservation constraint at every vertex v 
expect maybe s and t:

 sum_u f(u  v) = sum_w f(v  w)
 In other words, flow into v must equal flow out.
 Here I’m using the convention that f(u  v) = 0 if there is no edge u  v.

 Let partial f(v) := sum_w f(v  w) - sum_u f(u  v) denote the net flow out of v. The 
conservation constraints say partial f(v) = 0 for all v except s and t.
 |f| is the value of the flow f. It is the net flow out of vertex s.

 |f| := partial f(s) = sum_w f(s  w) - sum_u f(u  s)
 It turns out the value of f is also equal to the net flow into t:

 sum_v partial f(v) = partial f(s) + partial f(t)
 But every edge leaves one vertex and enters another, meaning the sum of the net 
flows out of vertices must equal 0.
 So sum_v partial f(v) = 0, implying partial(t) = -partial(s) = -|f|.

 OK, so the name of the problem implies we want to maximize the flow from s to t. So we 
need some limit on how much flow we’ll send through an edge.
 We’ll use a capacity function c : E  R≥0 where c(e) is a non-negative capacity for an edge. 
Think of it as the width of the pipe or throughput of the railline.
 Flow f is feasible with respect to c if f(e) ≤ c(e) for every edge e.
 In particular, f saturates edge e if f(e) = c(e) and avoids e if f(e) = 0.
 Here’s an example of a feasible (s, t)-flow of value 10.

 The maximum flow problem is to compute a maximum value (s, t)-flow that is feasible with 
respect to c.
 We’ll eventually get to algorithms for this problem, but first let’s talk about minimum cuts.

Minimum Cut



 An (s, t)-cut is a partition of the vertices into disjoint subsets S and T, meaning S U T = V and 
S intersect T = empty, where s in S and t in T.
 Again, we’ll work with a capacity function c : E  R≥0. The capacity of a cut (S, T) is the sum 
of capacities for edges that start in S and end in T.

 ||S, T|| := sum_{v in S} sum_{w in T} c(v  w)
 Similar to before, we’re assuming c(v  w) = 0 if v  w is not in the graph.

 This definition is asymmetric. Edges that start in T and end in S don’t matter at all when 
defining the capacity of the cut.
 Here’s an example of an (s, t)-cut of capacity 15. Yes, 15. That backwards edge does not 
count.

 The minimum cut problem is to compute an (s, t)-cut with minimum capacity.
 One way to think about the problem is that the minimum (s, t)-cut is the cheapest way to 
disrupt all flow from s to t. And we can make that relationship formal.
 Lemma: The value of any feasible (s, t)-flow f is at most the capacity of any (s, t)-cut (S, T).

 Now, look at the two inequality lines. The first is an equality if and only if there is no flow 



going from T to S. The second is an equality if and only if the flow saturates every edge 
from S to T.
 In other words: |f| = ||S, T|| if and only if f saturates every edge from S to T and avoids every 
edge from T to S. In this case, we can’t make |f| any bigger, so f must be a maximum flow. 
Also, we can’t make ||S, T|| any smaller, so (S, T) must be a minimum cut.

The Maxflow Mincut Theorem

 The surprising thing, and the thing most algorithms for this problem rely upon, is that the 
value of the maximum flow is always equal to the capacity of the minimum cut.
 This was shown by Ford and Fulkerson in 1954 and independently by Elias, Feinstein, and 
Shannon in 1956.
 The Maxflow Mincut Theorem: In any flow network with source s and target t, the value of a 
maximum (s, t)-flow is equal to the capacity of a minimum (s, t)-cut.
 To make the proof and subsequent algorithms easier, we’ll assume the capacity function is 
reduced. For every pair of vertices u and v, at most one of edge u  v or edge v  u is in E. 
Or if you prefer, c(u  v) = 0 or c(v  u) = 0.

 We can enforce this assumption by modifying the graph a bit. If both u  v and v  u 
appear in the graph, we’ll add two vertices x and y, replace u  v with a path u  x  v, 
replace v  u with v  y  u,  set c(u  x)  c(x  v)  c(u  v), and set c(v  y)  c(y  
u)  c(v  u).

 Now suppose we have a flow f. If we can modify f to increase its value, then it must not be 
a maximum flow. On the other hand, I’ll show you a minimum cut of equal capacity if we 
can’t increase f’s value.
 Now, how should we update f to increase its value? You can imagine pushing some 
material through the network along a single path like sending a single train from s to t. 
 Unfortunately, there may not be a path from s to t along which we can send more flow. We 
may need to reduce the flow on some edges to increase f’s value.
 The main idea will be to encode how much more flow we can add to some edges and how 
much flow we can undo from others by defining a different capacity function.
 The residual capacity function c_f : V x V  R is based on flow f.
 c_f(u  v) =

 c(u  v) - f(u  v) if u  v in E
 f(v  u) if v  u in E
 0 otherwise



 Remember, we’re assuming no pair of edges u  v and v  u have positive capacity, so at 
most one of those cases holds.
 Because f(u  v) ≥ 0 and f(u  v) ≤ c(u  v), the residual capacities are non-negative.
 But, we may have c_f(u  v) > 0 even if u  v is not an edge in the graph G. Or maybe c_f(u 

 v) = 0 even though u  v is an edge.
 So we define a new graph called the residual graph G_f = (V, E_f) where E_f is the set of 
edges with positive residual capacity.
 Let’s look at an example. The original graph with some flow f is on the left. The residual 
graph G_f is on the right.

 You might notice that the residual graph is not necessarily reduced. We have two edges on 
the left with positive capacity 10.
 Now, suppose we have flow f and we’ve computed the residual graph G_f. There is either a 
path from s to t in G_f or there isn’t.
 Suppose there is a path P from s to t in G_f.

 We call P an augmenting path. We’ll see why in a second.
 Let F = min_{u  v in P} c_f(u  v) be the maximum amount of flow we can “push” 
through the augmenting path in G_f.
 By push, I mean we define a new flow f’ : E  R where f’(u  v) =

 f(u  v) + F if u  v in P
 f(u  v) - F if v  u in P
 f(u  v) otherwise

 Again, graph G’s edges are reduced, so exactly one case holds.
 Here, we push 5 units of flow along an augmenting path.

 We don’t change the net flow out of any vertex except s and t, so f’ is still an (s, t)-flow.
 But is it feasible? Consider any edge u  v in E.

 If u  v in P, 
 f’(u  v) = f(u  v) + F > f(u  v) ≥ 0



 Also f’(u  v) = f(u  v) + F by definition of f’
 ≤ f(u  v) + c_f(u  v) by definition of F
 = f(u  v) + c(u  v) - f(u  v) by definition of c_f
 = c(u  v)

 If v  u in  P,
 f’(u  v) = f(u  v) - F < f(u  v) ≤ c(u  v). 
 Also, f’(u  v) = f(u  v) - F by definition of f’

 ≥ f(u  v) - c_f(v  u) by definition of F
 = f(u  v) - f(u  v) by definition of c_f
 = 0

 So f’ is a feasible (s, t)-flow.
 Finally, only the first edge of the augmenting path leaves s, so |f’| = |f| + F > |f|. We 
made some progress! So in this case, f was not a maximum s,t-flow.

 Now, suppose there is no path from source s to target t in the residual graph G_f.
 Let S be the vertices reachable from s in G_f, and let T = V \ S.
 Partition (S, T) is an (s, t)-cut, and for every u in S and v in T:

 If u  v in E, then 0 = c_f(u  v) = c(u  v) - f(u  v)
 i.e., f(u  v) = c(u  v); the edge is saturated.

 If v  u in E,  then 0 = c_f(u  v) = f(v  u)
 i.e., the edge is avoided.

 We see f saturates every edge from S to T and avoids every edge from T to S.
 So, f is a maximum flow, (S, T) is a minimum cut, and |f| = ||S, T||.

 To summarize, exactly one of these two cases holds:
1.  There is an augmenting path from s to t in the residual graph. We can strictly increase 

the value of f by pushing along that path, so f was not a maximum flow to begin with.
2.  There is no path from s to t in the residual graph. f is a maximum flow with value equal 

to the capacity of the minimum cut.


