CS 6363.003.21S Lecture 18-April 8, 2021

Main topics are \#maximum_flow and \#minimum_cut.

Shipment Rates and Bottlenecks

- Now, let's get started on one last subject in graph algorithms, and the one I think is the most interesting.
- "In the mid-1950s, U. S. Air Force researcher Theodore E. Harris and retired U. S. Army general Frank S. Ross wrote a classified report studying the rail network that linked the Soviet Union to its satellite countries in Eastern Europe. The network was modeled as a graph with vertices, representing geographic regions, and edges, representing links between those regions in the rail network. Each edge was given a weight, representing the rate at which material could be shipped from one region to the next. Essentially by trial and error, they determined both the maximum amount of stuff that could be moved from Russia into Europe, as well as the cheapest way to disrupt the network by removing links (or in less abstract terms, blowing up train tracks), which they called "the bottleneck". Their report, which included the drawing of the network [below], was only declassified in 1999. " - Erickson

- We're going to talk about how not to do these two things by trial and error.
- Specifically, we're going to discuss two problems known as the maximum flow problem, and the minimum cut problem.
- For both problems, we're given a directed graph $G=(V, E)$ with special vertices s, the source, and t, the target or sink.
- The maximum flow measures how much material can be transported from s to t.
- The minimum cut measures how much damage we need to do to separate s from t.

Maximum Flow

- An (s, t)-flow is a way of assigning values to the edges that models how material flows through a network. You could also imagine the network as a series of tubes or pipes. We're measuring how water, or trains, moves through them.
- Formally, its a function $f: E \rightarrow R \geq 0$ that satisfies the conservation constraint at every vertex v expect maybe s and t :
- sum_uf(u \rightarrow v) = sum_wf(v \rightarrow w)
- In other words, flow into v must equal flow out.
- Here I'm using the convention that $f(u \rightarrow v)=0$ if there is no edge $u \rightarrow v$.
- Let partial $f(v):=$ sum_w $f(v \rightarrow w)$ - sum_u $f(u \rightarrow v)$ denote the net flow out of v. The conservation constraints say partial $f(v)=0$ for all v except s and t.
- $|f|$ is the value of the flow f. It is the net flow out of vertex s.
- $|f|:=$ partial $f(s)=$ sum_w $f(s \rightarrow w)$ - sum_u $f(u \rightarrow s)$
- It turns out the value of f is also equal to the net flow into t :
- sum_v partial $f(v)=$ partial $f(s)+$ partial $f(t)$
- But every edge leaves one vertex and enters another, meaning the sum of the net flows out of vertices must equal 0 .
- So sum_v partial $f(v)=0$, implying partial $(t)=-$ partial $(s)=-|f|$.
- OK, so the name of the problem implies we want to maximize the flow from s to t. So we need some limit on how much flow we'll send through an edge.
- We'll use a capacity function $c: E \rightarrow R \geq 0$ where $c(e)$ is a non-negative capacity for an edge. Think of it as the width of the pipe or throughput of the railline.
- Flow f is feasible with respect to c if $f(\mathrm{e}) \leq \mathrm{c}(\mathrm{e})$ for every edge e .
- In particular, f saturates edge e if $\mathrm{f}(\mathrm{e})=\mathrm{c}(\mathrm{e})$ and avoids eif $\mathrm{f}(\mathrm{e})=0$.
- Here's an example of a feasible (s, t)-flow of value 10.

- The maximum flow problem is to compute a maximum value (s, t)-flow that is feasible with respect to c.
- We'll eventually get to algorithms for this problem, but first let's talk about minimum cuts.

Minimum Cut

- An (s, t)-cut is a partition of the vertices into disjoint subsets S and T, meaning $S \cup T=V$ and S intersect $T=$ empty, where s in S and t in T .
- Again, we'll work with a capacity function $c: E \rightarrow R \geq 0$. The capacity of a cut (S, T) is the sum of capacities for edges that start in S and end in T .
- $\|S, T\|:=$ sum_\{v in S $\}$ sum_ $\{w$ in $T\} c(v \rightarrow w)$
- Similar to before, we're assuming $c(v \rightarrow w)=0$ if $v \rightarrow w$ is not in the graph.
- This definition is asymmetric. Edges that start in T and end in S don't matter at all when defining the capacity of the cut.
- Here's an example of an (s, t)-cut of capacity 15 . Yes, 15. That backwards edge does not count.

- The minimum cut problem is to compute an (s, t)-cut with minimum capacity.
- One way to think about the problem is that the minimum (s, t)-cut is the cheapest way to disrupt all flow from s to t . And we can make that relationship formal.
- Lemma: The value of any feasible (s, t)-flow f is at most the capacity of any (s, t)-cut (S, T).

$$
\begin{array}{rlr}
|f| & =\partial f(s) & \text { [by definition] } \\
& =\sum_{v \in S} \partial f(v) & \text { [conservation constraint] } \\
& =\sum_{v \in S} \sum_{w} f(v \rightarrow w)-\sum_{v \in S} \sum_{u} f(u \rightarrow v) & \text { [math, definition of } \partial \text {] } \\
& =\sum_{v \in S} \sum_{w \notin S} f(v \rightarrow w)-\sum_{v \in S} \sum_{u \neq S} f(u \rightarrow v) & \text { [removing edges from } S \text { to } S \text {] } \\
& =\sum_{v \in S} \sum_{w \in T} f(v \rightarrow w)-\sum_{v \in S} \sum_{u \in T} f(u \rightarrow v) & \\
& \leq \sum_{v \in S} \sum_{w \in T} f(v \rightarrow w) & \text { [definition of cut] } \\
& \leq \sum_{v \in S} \sum_{w \in T} c(v \rightarrow w) \\
& =\|S, T\| &
\end{array}
$$

- Now, look at the two inequality lines. The first is an equality if and only if there is no flow
going from T to S. The second is an equality if and only if the flow saturates every edge from S to T .
- In other words: $|f|=\| S, T| |$ if and only if f saturates every edge from S to T and avoids every edge from T to S. In this case, we cant make $|f|$ any bigger, so f must be a maximum flow. Also, we cant make $\|S, T\|$ any smaller, so (S, T) must be a minimum cut.

The Maxflow Mincut Theorem

- The surprising thing, and the thing most algorithms for this problem rely upon, is that the value of the maximum flow is always equal to the capacity of the minimum cut.
- This was shown by Ford and Fulkerson in 1954 and independently by Elias, Feinstein, and Shannon in 1956.
- The Maxflow Mincut Theorem: In any flow network with source s and target t, the value of a maximum (s, t)-flow is equal to the capacity of a minimum (s, t)-cut.
- To make the proof and subsequent algorithms easier, we'll assume the capacity function is reduced. For every pair of vertices u and v, at most one of edge $u \rightarrow v$ or edge $v \rightarrow u$ is in E. Or if you prefer, $c(u \rightarrow v)=0$ or $c(v \rightarrow u)=0$.
- We can enforce this assumption by modifying the graph a bit. If both $u \rightarrow v$ and $v \rightarrow u$ appear in the graph, we'll add two vertices x and y, replace $u \rightarrow v$ with a path $u \rightarrow x \rightarrow v$, replace $v \rightarrow u$ with $v \rightarrow y \rightarrow u$, set $c(u \rightarrow x) \leftarrow c(x \rightarrow v) \leftarrow c(u \rightarrow v)$, and set $c(v \rightarrow y) \leftarrow c(y \rightarrow$ $u) \leftarrow c(v \rightarrow u)$.

- Now suppose we have a flow f. If we can modify f to increase its value, then it must not be a maximum flow. On the other hand, Ill show you a minimum cut of equal capacity if we can't increase f's value.
- Now, how should we update f to increase its value? You can imagine pushing some material through the network along a single path like sending a single train from s to t.
- Unfortunately, there may not be a path from s to t along which we can send more flow. We may need to reduce the flow on some edges to increase f's value.
- The main idea will be to encode how much more flow we can add to some edges and how much flow we can undo from others by defining a different capacity function.
- The residual capacity function $c_{-} f: V \times V \rightarrow R$ is based on flow f.
- $c_{-} f(u \rightarrow v)=$
- $c(u \rightarrow v)-f(u \rightarrow v)$ if $u \rightarrow v$ in E
- $f(v \rightarrow u)$ if $v \rightarrow u$ in E
- 0 otherwise
- Remember, we're assuming no pair of edges $u \rightarrow v$ and $v \rightarrow u$ have positive capacity, so at most one of those cases holds.
- Because $f(u \rightarrow v) \geq 0$ and $f(u \rightarrow v) \leq c(u \rightarrow v)$, the residual capacities are non-negative.
- But, we may have $c_{-} f(u \rightarrow v)>0$ even if $u \rightarrow v$ is not an edge in the graph G. Or maybe c_f(u $\rightarrow v)=0$ even though $u \rightarrow v$ is an edge.
- So we define a new graph called the residual graph $G_{-} f=\left(V, E_{-} f\right)$ where $E_{-} f$ is the set of edges with positive residual capacity.
- Let's look at an example. The original graph with some flow f is on the left. The residual graph G_f is on the right.

- You might notice that the residual graph is not necessarily reduced. We have two edges on the left with positive capacity 10.
- Now, suppose we have flow f and we've computed the residual graph G_f. There is either a path from s to t in G_f or there isn't.
- Suppose there is a path P from s to t in G_f.
- We call P an augmenting path. We'll see why in a second.
- Let $F=\min _\{u \rightarrow v \text { in } P\} c_{-} f(u \rightarrow v)$ be the maximum amount of flow we can "push" through the augmenting path in G_f.
- By push, I mean we define a new flow $f^{\prime}: E \rightarrow R$ where $f^{\prime}(u \rightarrow v)=$
- $f(u \rightarrow v)+F$ if $u \rightarrow v$ in P
- $f(u \rightarrow v)-F$ if $v \rightarrow u$ in P
- $f(u \rightarrow v)$ otherwise
- Again, graph G's edges are reduced, so exactly one case holds.
- Here, we push 5 units of flow along an augmenting path.

- We don't change the net flow out of any vertex except s and t, so f^{\prime} is still an (s, t)-flow.
- But is it feasible? Consider any edge $u \rightarrow v$ in E.
- If $u \rightarrow v$ in P,

$$
\text { - } f^{\prime}(u \rightarrow v)=f(u \rightarrow v)+F>f(u \rightarrow v) \geq 0
$$

- Also $f^{\prime}(u \rightarrow v)=f(u \rightarrow v)+F$ by definition of f^{\prime}
- $\leq f(u \rightarrow v)+c_{-} f(u \rightarrow v)$ by definition of F
- $=f(u \rightarrow v)+c(u \rightarrow v)-f(u \rightarrow v)$ by definition of $c_{-} f$
- $=c(u \rightarrow v)$
- If $v \rightarrow u$ in P,
- $f^{\prime}(u \rightarrow v)=f(u \rightarrow v)-F<f(u \rightarrow v) \leq c(u \rightarrow v)$.
- Also, $f^{\prime}(u \rightarrow v)=f(u \rightarrow v)$ - F by definition of f^{\prime}
- $\geq f(u \rightarrow v)-c_{-} f(v \rightarrow u)$ by definition of F
- $=f(u \rightarrow v)-f(u \rightarrow v)$ by definition of $c_{-} f$
- = 0
- So f^{\prime} is a feasible (s, t)-flow.
- Finally, only the first edge of the augmenting path leaves s, so $\left|f^{\prime}\right|=|f|+F>|f|$. We made some progress! So in this case, f was not a maximum s,t-flow.
- Now, suppose there is no path from source s to target t in the residual graph G_f.
- Let S be the vertices reachable from s in $G_{-} f$, and let $T=V \backslash S$.
- Partition (S, T) is an (s, t)-cut, and for every u in S and v in T :
- If $u \rightarrow v$ in E, then $0=c _f(u \rightarrow v)=c(u \rightarrow v)-f(u \rightarrow v)$
- i.e., $f(u \rightarrow v)=c(u \rightarrow v)$; the edge is saturated.
- If $v \rightarrow u$ in E, then $0=c _f(u \rightarrow v)=f(v \rightarrow u)$
- i.e., the edge is avoided.
- We see f saturates every edge from S to T and avoids every edge from T to S.
- So, f is a maximum flow, (S, T) is a minimum cut, and $|f|=\|S, T\|$.
- To summarize, exactly one of these two cases holds:

1. There is an augmenting path from s to t in the residual graph. We can strictly increase the value of f by pushing along that path, so f was not a maximum flow to begin with.
2. There is no path from s to t in the residual graph. f is a maximum flow with value equal to the capacity of the minimum cut.
