
CS 6363.003.21S Lecture 19—April 13, 2021

Main topics are #maximum_flow  and #minimum_cut .

Ford-Fulkerson’s Augmenting Path Algorithm

 Last week, we defined the maximum flow and minimum cut problems, and then we saw a 
proof that for any input to the two problems, the value of the maximum flow equals the 
capacity of the minimum cut.
 For the proof, we started with an arbitrary feasible (s,t)-flow f : E  R_{≥0} and built the 
residual graph G_f which contained all edges with positive residual capacity according to 
c_f : V x V  R_{≥0}:

 If G_f contained an augmenting path P from s to t, we pushed a maximal amount of flow 
along P, creating a new flow of higher value.

 Otherwise, we set S to be the vertices reachable from s in G_f and T := V \ S. Pair (S, T) was 
a cut whose capacity equaled the value of f. So a max flow and a min cut.
 You can turn this proof into an algorithm for computing a maximum flow usually referred 
to as the Ford-Fulkerson Augmenting Path Algorithm.
 In short: start with all flow values equal to 0 and repeatedly push flow along augmenting 
paths until you can’t find one anymore.
 But will this process actually result in a maximum flow?
 First, let’s assume all the capacities are integers. This has a few repercussions.

 The initial flow is all integers since 0 is an integer.

bear://x-callback-url/open-tag?name=maximum_flow
bear://x-callback-url/open-tag?name=maximum_flow
bear://x-callback-url/open-tag?name=maximum_flow
bear://x-callback-url/open-tag?name=maximum_flow
bear://x-callback-url/open-tag?name=minimum_cut
bear://x-callback-url/open-tag?name=minimum_cut
bear://x-callback-url/open-tag?name=minimum_cut
bear://x-callback-url/open-tag?name=minimum_cut


 If we assume inductively that f is all integers, then all the residual capacities are 
integers.
 Meaning any amount of flow we push is always a positive integer.
 Meaning any new flow is all integers and its value is at least 1 greater than the old 
flow.

 So if we let f^* denote the maximum flow, we do at most | f^* | augmentations and f^* is 
all integers.
 We can build and search the residual graph in O(E) time, so these | f^* | augmentations 
take O(E | f^* |) time total.
 But there are two issues with this analysis.
 At the beginning of the semester, I talked about different classes of running times. Our 
usual goal was to find algorithms with running time polynomial in the input size. For 
example, we could compute edit distance in O(n^2) time or all pairs shortest paths in 
O(V^3) time.
 O(E | f^* |) is what we call a pseudo-polynomial time algorithm. It runs in time polynomial in 
|E| and | f^* |, but | f^* | may not be polynomial in the input size.
 In particular, consider the example below: we might try pushing along the 1 edge or its 
reverse every augmentation, leading to a running time of Theta(X). But X can be written 
using O(log X) bits; the running time is exponential in the input size!

 Ford-Fulkerson is often efficient in practice, though, or in situations where you can 
guarantee | f^* | is small.
 The other issue with this analysis is that we’re assuming the capacities are integers. But we 
defined flows and capacities using real numbers.
 You can set up examples with real number capacities where every augmentation gets 
smaller and smaller and smaller. You always get higher value flows, but you never get to a 
maximum flow. There’s not even a guarantee that you’ll approach the maximum flow value 
in the limit.
 Of course, computers don’t actually store real numbers, but you should still be nervous. If 
your floating point additions or comparisons start doing rounding, you may actually enter 
an infinite loop where you never make real progress on increasing the flow value!
 But here’s the trick. We get to choose which augmenting paths to use. If we pick carefully, 
maybe the algorithm will run faster.
 Before we discuss our options, though, it might help to learn a bit more about how flows 



are structured.

Combining and Decomposing Flows

 (s,t)-flows have some nice (algebraic) structure which we can use in our algorithms or 
applications. These are easiest to explain if we ignore capacities and allow flow values on 
edges to be negative.
 A first thing we might observe is that flows combine nicely. Let f and g be two (s,t)-flows, 
and let alpha and beta be two real numbers. Define a function h : E  R as

or more simply, we might say h := alpha f + beta g.
 It’s not hard to prove that h is also an (s,t)-flow. Further, its value |h| = alpha |f| + beta |g|. 
More generally, any linear combination of (s,t)-flows is an (s,t)-flow!
 But if we flip this idea around, we can write any given (s,t)-flow f as a weighted sum of 
particularly nice simple flows.
 Let P be any directed path from s to t (which may go along some edges of G backwards). 
The corresponding path flow P : E  R is defined as (yes, I reused notation):

 Similarly, given a directed cycle C, we can define a corresponding cycle flow C : E  R as

 As stated, any linear combination of path and cycle flows is an (s,t)-flow. But it turns out the 
converse is true, and in a nice way.
 Flow Decomposition Theorem: Every non-negative (s,t)-flow f is the positive linear 
combination of at most |E| directed (s,t)-path and cycle flows. Moreover, an edge u  v 
appears in at least one of these paths or cycles if and only if f(u  v) > 0.
 I’ll spare you the details, but Erickson uses the following approach in his proof.

 First, we prove the lemma only for a circulation meaning flow is conserved at every 
vertex including s and t.
 To do so, we greedily walk along edges with positive flow until we repeat a vertex, 
finding a cycle C. Let F be the minimum flow value on any edge of the cycle. One term 
in our linear combination is F C.
 Then, we subtract F C from the circulation, resulting in one fewer edge with positive 
flow. The Recursion Fairy handles the rest.



 But what if f is not a circulation? Add an edge t  s to the graph and set f(t  s) := |f|. 
Now we do have a circulation, and we can use the above argument. Every cycle we 
use that contains t  s is really a path in the original graph.

 This proof is practically an algorithm! You can find the decomposition in O(V) time per 
member, so O(VE) time total.
 We may also observe two things from this proof strategy that I’ve personally used many 
times in my career:

 Circulations can be decomposed into a weighted sum of cycles; you don’t need 
paths.
 An acyclic (s,t)-flow (no cycles of positive flow edges) can (only) be decomposed into 
a weighted sum of paths.

 Further, you can take any (s,t)-flow, and repeatedly remove flow cycles as described above 
to find an acyclic flow of the same value. Sometimes acyclic flows are easier to use or play 
with depending on why you needed to compute the flow.
 So now that we know a bit more about the structure of flows, let’s see about speeding up 
Ford-Fulkerson by more carefully selecting our augmenting paths.
 Both of the following algorithms were discovered by Edmonds and Karp (and others) in 
the 1970s.

Edmonds-Karp 1: Fattest Augmenting Paths

 Edmonds-Karp: Choose the augmenting path with the largest bottleneck value.
 You can find this path using a variant of the Prim-Jarník minimum spanning tree algorithm: 
Build a spanning tree from s in the residual graph, repeatedly adding edges of largest 
residual capacity that leave the tree.
 You can pull edges out of a priority queue implemented with, say, a binary heap, so O(log 
V) time per edge or O(E log V) time total to find each augmenting path.
 So how many augmenting paths are there?
 Let f be the current flow and f’ be the maximum flow in the current residual graph G_f. In 
other words, f + f’ is the maximum flow in G.
 Let e be the bottleneck edge in the current iteration, so we’re about to push c_f(e) units of 
flow.
 There is a decomposition of f’ that includes at most |E| path flows, so c_f(e) ≥ |f’| / |E|.
 So pushing down the maximum-bottleneck path multiplies the residual maximum flow 
value by (1 - 1 / |E|) or less.
 After |E| * ln |f^* | iterations, the residual value of the maximum flow is at most

 In other words, we can’t do another augmentation after |E| * ln |f^* | iterations if the 
capacities are integers, because there won’t be an integral amount of flow left to push.



 The total running time assuming integer capacities is O(E^2 log V log |f^* |).
 This running time is polynomial in the problem size, but it still relies on integer capacities.

Edmonds-Karp 2: Shortest Augmenting Paths

 Edmonds-Karp (again): Choose an augmenting path with the smallest number of edges.
 Can be found in O(E) time by running a breadth-first search in the residual graph.
 Now to bound the number of iterations.
 Let f_i be the flow after i iterations, and G_i = G_{f_i}. Flow f_0 is zero everywhere and G_0 
= G.
 Let level_i(v) be the unweighted shortest path distance from s to v in G_i.
 Lemma: level_{i}(v) ≥ level_{i-1}(v) for all vertices v and non-negative integers i.

 We’ll do induction on level_i(v).
 level_i(s) = 0 = level_{i-1}(s). Check.
 If we cannot reach v from s, then level_i(v) = infty ≥ level_{i-1}(v). Check.
 Otherwise, let s  …  u  v be a shortest path to v in G_{i}.
 level_i(v) = level_{i}(u) + 1, so the induction hypothesis shows level_i(u) ≥ level_{i-1}(u).
 If u  v is in G_{i-1}, then level_{i-1}(u) + 1 ≥ level_{i-1}(v). 
 If u  v is not in G_{i-1}, then we must have pushed along v  u to create residual 
capacity in u  v. Meaning v  u was on the shortest s to t path.  So level_{i-1}(u) + 1 > 
level_{i-1}(u) -1 = level_{i-1}(v).
 Either way, level_i(v) = level_i(u) + 1 ≥ level_{i-1}(u) + 1 ≥ level_{i-1}(v)

 Lemma: Any edge u  v disappears from the residual graph at most |V| / 2 times.
 Suppose u  v is in G_i and G_{j+1} but not in G_{i+1}, …, G_j for some i < j.
 u  v must be in the ith augmenting path, so level_i(v) = level_i(u) + 1.
 and v  u must be in the jth augmenting path, so level_j(u) = level_j(v) + 1.
 So, level_j(u) = level_j(v) + 1 ≥ level_i(v) + 1 = level_i(u) + 2.
 So the distance from s to u increased by 2 between the disappearance and 
reappearance of u  v. Every level is less than |V| or infinite (if there is no path to u), so 
an edge can disappear at most |V| / 2 times.

 There are 2|E| possible residual edges so |E| |V| disappearances total. Each augmentation 
makes its bottleneck edge disappear, so there are at most |E| |V| iterations.
 The total running time is O(VE^2).
 And this running time is correct even for arbitrary non-negative real number edge 
capacities.
 A variation on this idea was independently proposed by Dinitz in 1970. His algorithm was 
more complicated, but it runs in only O(V^2 E) time.
 And there have been many more algorithms discovered since these. Some rely on fancy 
data structures. Some use methods other than augmenting paths.



 Building upon decades of more or less steady progress from several researchers, Orlin in 
2012 described an algorithm that runs in only O(VE) time.
 Very few people understand this algorithm, and I am not one of them, so it’s well beyond 
the scope of this class.
 But for the purposes of doing homework or exams, you should feel free to cite it.
 Orlin [2012]: Maximum flows and minimum cuts can be computed in O(VE) time.


